Presentation Type

Poster

Full Name of Faculty Mentor

Ryan M. Yoder, Psychology

Major

Psychology

Presentation Abstract

Hypoxic conditions disrupt brain development in many species, but oxygen deprivation may be particularly detrimental to ectotherms such as reptiles. Our preliminary data suggest the brains of embryonic leopard geckos (Eublepharis macularius) are damaged following brief hypoxic conditions in ovo, and these developmental changes are associated with altered exploratory behavior in adulthood. The objective of this study is to understand the effects of such hypoxic conditions neuronally once the geckos have reached adulthood. However, no previous studies have evaluated the neuronal density of navigation-related brain regions in normal adult geckos, or whether these regions are sensitive to early hypoxia. Here, we present the optical density measurements from the medial cortex, the dorsal and lateral cortex, the dorsal lateral thalamus, and the septal region of adult geckos (n=2) that developed in normoxic conditions, to establish a baseline measure of cell density. Mean (SEM) optical density values are shown in the Table. These optical density values provide an important baseline for our on-going evaluation of neuronal sensitivity to hypoxic conditions in ovo. We anticipate that neuronal density values from hypoxic geckos will be reduced, relative to those of geckos that develop in normoxic conditions.

Location

Poster Session 1

Start Date

12-4-2022 12:30 PM

End Date

12-4-2022 2:30 PM

Disciplines

Psychology

Included in

Psychology Commons

Share

COinS
 
Apr 12th, 12:30 PM Apr 12th, 2:30 PM

Neuronal Density in Navigation-Related Regions of the Adult Leopard Gecko Brain

Poster Session 1

Hypoxic conditions disrupt brain development in many species, but oxygen deprivation may be particularly detrimental to ectotherms such as reptiles. Our preliminary data suggest the brains of embryonic leopard geckos (Eublepharis macularius) are damaged following brief hypoxic conditions in ovo, and these developmental changes are associated with altered exploratory behavior in adulthood. The objective of this study is to understand the effects of such hypoxic conditions neuronally once the geckos have reached adulthood. However, no previous studies have evaluated the neuronal density of navigation-related brain regions in normal adult geckos, or whether these regions are sensitive to early hypoxia. Here, we present the optical density measurements from the medial cortex, the dorsal and lateral cortex, the dorsal lateral thalamus, and the septal region of adult geckos (n=2) that developed in normoxic conditions, to establish a baseline measure of cell density. Mean (SEM) optical density values are shown in the Table. These optical density values provide an important baseline for our on-going evaluation of neuronal sensitivity to hypoxic conditions in ovo. We anticipate that neuronal density values from hypoxic geckos will be reduced, relative to those of geckos that develop in normoxic conditions.

 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.