Date of Award

Summer 8-1-2023

Document Type


Degree Name

Doctor of Philosophy (PhD)


Coastal and Marine Systems Science


College of Science

First Advisor

Erin E. Hackett

Second Advisor

Louis Keiner

Third Advisor

Robert Burkholder

Additional Advisors

Keshav Jagannathan; Qing Wang


Predictions of environmental conditions within the marine atmospheric surface layer (MASL) are important to X-band radar system performance. Anomalous propagation occurs in conditions of non-standard atmospheric refractivity, driven by the virtually permanent presence of evaporation ducts (ED) in marine environments. Evaporation ducts are commonly characterized by the evaporation duct height (EDH), evaporation duct strength, and the gradients below the EDH, known as the evaporation duct curvature. Refractivity, and subsequent features, are estimated in the MASL primarily using four methods: in-situ measurements, numerical weather and surface layer modeling, boundary layer theory, and inversion methods.

The existing refractivity estimation techniques often assume steady homogeneous conditions, and discrepancies between measured and simulated propagation predictions exist. These discrepancies could be attributed to the exclusion of turbulent fluctuations of the refractive index, exclusion of spatially heterogeneous refractive environments, and inaccurate characterization of the sea surface in propagation simulations. Due to the associated complexity and modeling challenges, unsteady inhomogeneous refractivity and rough sea surfaces are often omitted from simulations.

This dissertation first investigates techniques for steady homogeneous refractivity and characterizes refractivity predictions using EDH and profile curvature, examining their effects on X-band propagation. Observed differences between techniques are explored with respect to prevailing meteorological conditions. Significant characteristics are then utilized in refractivity inversions for mean refractivity based-on point-to-point EM measurements. The inversions are compared to the other previously examined techniques. Differences between refractivity estimation methods are generally observed in relation to EDH, resulting in the largest variations in propagation, where most significant EDH discrepancies occur in stable conditions. Further, discrepancies among the refractivity estimation methods (in-situ, numerical models, theory, and inversion) when conditions are unstable and the mean EDH are similar, could be attributed to the neglect of spatial heterogeneity of EDH and turbulent fluctuations in the refractive index. To address this, a spectral-based turbulent refractive index fluctuation model (TRIF) is applied to emulate refractive index fluctuations. TRIF is verified against in-situ meteorological measurements and integrated with a heterogenous EDH model to estimate a comprehensive propagation environment. Lastly, a global sensitivity analysis is applied to evaluate the leading-order effects and non-linear interactions between the parameters of the comprehensive refractivity model and the sea surface in a parabolic wave equation propagation simulation under different atmospheric stability regimes (stable, neutral, and unstable). In neutral and stable regimes, mean evaporation duct characteristics (EDH and refractive gradients below the EDH) have the greatest impact on propagation, particularly beyond the geometric horizon. In unstable conditions, turbulence also plays a significant role. Regardless of atmospheric stability, forward scattering from the rough sea surface has a substantial effect on propagation predictions, especially within the lowest 10 m of the atmosphere.