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Sequence Alignment

 Figure 1.  A sequence alignment of UspS orthologous sequences from seventeen different bacterial species. Figure was made using Jalview multiple sequence alignment⁸.

Protein Regulated by sRNA-
mRNA Interactions

Figure 4. Universal stress protein associated with 
mRNA’s predicted to interact with P4 in UspS 
in L. bulgaricus and L. acidophilus. Copra and 
IntaRNA were used to show interactions between 
P4 of UspS and mRNA encoding the universal 
stress protein. NCBI Blast and Uniprot were used to 
predict protein functions. Graphical representation 
prepared on Adobe Ilustrator based on Alpha Fold 
AF-Q1GAV8-F1-model-v4. ¹⁰,¹¹,¹²,¹5,18,19,20

L. bulgaricusA L. acidophilusB

3D Models

Figure 5. Tertiary structures of the P4 region of L. bulgaricus (A) and L. acidophilus (B) from 
Rosetta with pseudoknots highlighted in pink. Pseudoknot pair nucleotides labeled as pink and purple 
nucleotides.⁷ 

Secondary Structure Comparison

Figure 2. Secondary structures of L. bulgaricus (A) and L. acidophilus (B). Structural regions are 
labeled P1 through P6. The P4 regions highlighted in pink seems to be highly conserved between 
species. Pseudoknot sequences are identified by attaching lines on the P4 region. Figured made using 
mFold and RNApdbee.⁴,⁵,⁶,¹³,¹⁴
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Human Genes in your body: Bacterial Genes in your body:
22 Thousand 8 Million

Where do we get these bacteria?
In the foods we eat everyday!

In our lab we study sRNA in Probiotic Bacteria
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Protein: L. bulgaricus Universal stress protein 
Function: Stress response

Isolation of UspS RNA from Bacterial DNA
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Figure 7. DNA templates of UspS. 
PCR products: L. acidophilus P1-P5, 
P1-P6, L. bulgaricus P1-P5, P1-P6. 1.5% 
agarose in TAE, 45 minutes at 80V, 6x 
loading dye, 100 bp Ladder Maker (NEB), 
stained with ethidium bromide.

Figure 8. PCR digests and RNA transcripts of UspS 
constructs. RNA transcripts: L. acidophilus P1-P6, P1-
P5, L. bulgaricus P1-P6, P1-P5. All RNA transcriptions 
performed with 24mM and 36mM MgCl₂. PCR digests: L. 
acidophilus P1-P6, P1-P5, L. bulgaricus P1-P6, P1-P5. 4-20% 
Tris Glycine Gel with Native Tris Glycine buffer (Invitrogen), 
45 minutes at 200V, SYBR Green II dye (Thermo Fisher), 
RiboRuler RNA ladder (Thermo Fisher). 
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UspS Thermal Melt Assay 

LA UspS 1-2 (0 MgCl2) LA UspS 1-4 (0 MgCl2)

LDB UspS 1-2 (0 MgCl2) LDB UspS 1-4 (0 MgCl2)

Thermal Melt of UspS

Figure 9. Thermal Melt of UspS RNA from Bacterial DNA. RNA transcripts: L. acidophilus P1-P6 
(1-2), P1-P5 (1-4), L. bulgaricus P1-P6 (1-2), P1-P5 (1-4). All thermal melts performed with 0 MgCl₂.
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Goal: To identify and explore the conservation of function and structure of 
the sRNA, UspS, in probiotic bacteria and to further analyze its role in host 
interactions.
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Identification of a Small Regulatory RNA UspS Associated 
with the Universal Stress Protein in Lactobacillus Species

Introduction
Multiple sequence alignment shows conservation of sequences 
between Lactobacillus species suggesting this sRNA is essential for the 
molecular functions of lactobacilli.⁸ Secondary structure predictions 
show structural conservation of UspS P4 between L. acidophilus and 
L. bulgaricus suggesting this region is a significant site for mRNA 
interactions.⁴ The conserved structure of the P4 region suggests that 
UspS may correspond to 6S RNA in Lactobacillus species as most 
lactobacilli lack a predicted 6S RNA.¹,¹⁷ UspS may function similar to 
6S RNA in E. coli by forming a complex with the sigma subunit of RNA 
polymerase and initiate transcription.¹,¹⁷ Three-dimensional modeling 
and genetic mapping allow us to see potential sites for translational 
control of protein synthesis.⁷ The presence of a universal stress protein 
downstream of UspS in both L. acidophilus and L. bulgaricus infers 
that UspS may interact with the mRNA of a universal stress protein.² 
Other predicted mRNA interactions indicate that UspS may activate a 
change in the bacteria’s membrane structure as a result of stress.¹⁰-¹² 
These interactions suggest that UspS may play a role in host 
interactions by changing bacterial membrane structure when exposed 
to stress. The confermation of correct size bands of PCR products, 
digest constructs, and T7 products confirms that our methods for 
extracting, amplifying, and isolating target bacterial genes are a reliable 
method for studying sRNA in bacterial species. The thermal shift assay 
suggest the presence of secondary strucure of UspS in both bacterial 
species. 

Candidate noncoding RNA sequences were chosen by searching the literature
containing potential sRNAs in probiotic bacteria. A target noncoding RNA (UspS) was 
chosen based on a paper from 2010 by the Breaker lab.¹ The sequence was 
characterized using computational methods to predict the structure and function of 
UspS. NCBI Nucleotide Blast was used to identify the intergenic region surrounding 
UspS. Nucleotide sequence were taken from NCBI Nucleotide Blast.² A transcription 
start site and rho independant terminator were identified based on known Lactobacillus 
promoter sequences and uracil-rich stem loop trails.³ mFold and RNApdbee were used 
to predict the secondary structure and pseudoknot sequences.⁴-⁶ Secondary structures 
from mFold were input into Rosetta’s FARFAR2 to create tertiary structure models.⁴,⁷ 
NCBI Nucleotide Blast was used to identify UspS sequences in seventeen different 
species of bacteria.² Jalview was used to align sequences, predict a phylogenic tree, and 
calculate conservation between species.⁸ CopraRNA and IntaRNA were used to predict 
protein interactions and function of UspS.⁹,¹⁰,¹¹,¹²  

Two types of Lactobacillaceae (Lactobacillus acidophilus and Lactobacillus 
delbrueckii subsp. bulgaricus) were prepared for growth culture inoculation by 
rehydration of freeze-dried bacterial cells. MRS media was used to grow both 
lactobacillus species under anaerobic conditions at 37 °C. Bacterial growth cultures were 
harvested and the DNA of L. acidophilus. and L. bulgaricus were extracted using the 
Wizard Genomic DNA Purification Kit (Promega). Primers were designed to 
amplify UspS based on NCBI’s nucleotide sequences.² A T7 promoter and restriction 
sites were included in the primer design. A PCR reaction was run to target UspS in both 
species as a short construct without a terminator and a long construct with a terminator. 
Agarose gel electrophoresis confirmed the sizes of target DNA. A digest was performed 
using blunt end restriction enzymes DraI and SwaI. The PCR constructs and digested 
constructs were purified using Wizard SV Gel and PCR Clean-Up System Kit (Promega). 
The purified digested constructs were used for transcription using a T7 RNA Polymerase 
(NEB). The target RNA sizes, digest construct sizes, and DNA sizes were confirmed using 
polyacrylamide gel electrophoresis. Products of T7 transcripts was purified using the 
RNeasy MinElute clean-up kit (Qiagen). Thermal melt assays were performed using 
Bio-rad CFX96 Touch Real-Time PCR and analyzed using CFX Maestro. 

Future Work
Restriction enzymes will be used to insert UspS into the plasmid 
pUC18 for large scale synthesis of RNA to use in structural studies. 
A Electrophoretic Mobility Shift Assay will be performed to study 
Usp-UspS interactions in vitro. Future studies include confirming 
secondary and tertiary structures of UspS. A RNase T₁ digest will 
be used to confirm the presence of secondary structure of UspS 
by observing the degradation of unpaired G residues. Different 
concentrations of precipitants will be tested to find optimal conditions 
for crystallization of RNA. Three-dimensional structures of UspS 
may then be observed using X-ray crystallography. Nuclear magnetic 
resonance spectroscopy (NMR) may be used to confirm secondary 
structures of UspS through observation of base pair interactions.
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Conservation of UspS P4 Region

Figure 3. Conservation of UspS P4 region in 
seventeen species from pairwise alignment using 
Jalview.⁸ 

Figure 6. Conservation of 6S RNA in E. coli based on 
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