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Introduction

sRNA in S. pyogenes7-11

Three types of lactic acid bacteria (Streptococcus thermophilus, Lactobacillus acidophilus,
Lactobacillus lactis) were grown under anaerobic conditions at 37°C. The media used were: M17
for Streptococcus thermophilus, MRS for Lactobacillus acidophilus, LB for Lactobacillus lactis. After
the bacteria reached the exponential phase, the genomic DNA of S. thermophilus was extracted
using the Wizard Genomic DNA Purification Kit (Promega). Primers were designed to isolate the
AsdS construct by PCR. Gel electrophoresis confirmed the presence of the correct sized DNA
constructs. PCR constructs were purified before and after digestion with restriction enzymes (NEB)
using a Wizard SV Gel and PCR Clean-Up System kit (Promega). The purified DNA constructs were
used as templates for in vitro transcription reactions using T7 RNA polymerase (NEB). The
transcribed RNA was characterized by agarose gel and PAGE electrophoresis to confirm the
presence of the correct sized RNA.
Computational research was conducted to predict structural and functional characteristics of
AsdS. The NCBI services were used to find the regions of similarity between sequences as well as
aid in primer design. Jalview was used to align the sequences obtained from NCBI. Secondary
structure predictions were generated using RNAfold.12-13 Base-pairing information from RNAfold
was used as input for ROSIE: FarFar2 to obtain the tertiary structure predictions.14 Rfam was used
to obtain data for noncoding RNA and KEGG was used for access to the Gene/Metabolic Pathway
database. IntaRNA was used to predict putative functions of AsdS.15 RNAalifold was used to obtain
a consensus secondary structure for AsdS among Streptococcus species.
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Figure 1. MarS sequences from two different S. pyogenes species were compared to their orthologous sequences of AsdS from two different S. thermophilus 
species. The figure was generated using Jalview.18
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Figure 2. Secondary structure
of MarS and AsdS appears to
be highly conserved in various
strains of Streptococcus. The
secondary structures of MarS
from S. pyogenes (A) and AsdS
from S. thermophilus (B) were
predicted by RNAfold13 and
show a similar arrangement of
structured regions, which are
labeled P1 through P6.
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Figure 3. Graphs A and B show
regions of activity in MarS and
AsdS respectively. IntaRNA15 was
used to show gene interactions
between the sRNA and genes.
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Figure 4. DNA templates for synthesis of AsdS. (4A) PCR products: P1-P6
(full-length), P1-P5, P2-P5, P6. (4B) PCR products: P1-P6 (full-length), P1-P5,
P2-P5. 1.5% agarose in TAE, 40 minutes at 80V, 6X loading dye, 100 bp
Ladder Marker (NEB), stained with ethidium bromide.
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Figure 5. RNA transcripts of
AsdS constructs. 4-20% Tris
Glycine Gel with Native Tris
Glycine buffer (Invitrogen), 40
minutes at 200 V, SYBR Green II
dye (Thermo Fisher), RiboRuler
RNA ladder (Thermo Fisher).
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In future work, the predicted secondary structure of the AsdS
sRNA will be confirmed by RNase T1 digest. Differential
scanning fluorimetry will be used to find initial conditions for
crystallography, with the goal of collecting X–ray
diffraction data and determining the three-dimensional
structure of AsdS sRNA. Alternative methods, including
selective 2′ hydroxyl acylation analyzed by primer extension
(SHAPE) and nuclear magnetic resonance (NMR)
spectroscopy may be used to elucidate the structure and
assay for interactions with mRNAs regulated by AsdS sRNA.
Separately, extracellular vesicles (EVs) produced by lactic
acid bacteria will be isolated with the intent of identifying the
components encapsulated within them with a focus on RNA
structures.

As a prerequisite for studying small regulatory RNA (sRNA)
functions in lactic acid bacteria, we have developed methods in
our laboratory to anaerobically grow S. thermophilus,
L. acidophilus, and L. bulgaricus and to extract genomic DNA.
Our first study focuses on AsdS sRNA from S. thermophilus,
which was selected based on sequence homology with MarS
from S. pyogenes. We were able to isolate the gene for the
AsdS sRNA from S. thermophilus and design constructs of the
structural domains for synthesis of RNA by in vitro
transcription.

Secondary structure predictions show that the sequence
homology between MarS and AsdS extends to the
arrangement of the structured regions, P1 through P6. Three-
dimensional modeling of the structural domains of AsdS sRNA
allows us to see potential sites for interactions with mRNA
transcripts of regulated genes. Genetic mapping with InstaRNA
suggest that AsdS may regulate various processes including
metabolism, detoxification, homeostasis, RNA processing,
biofilm formation, and intraspecies communication.
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