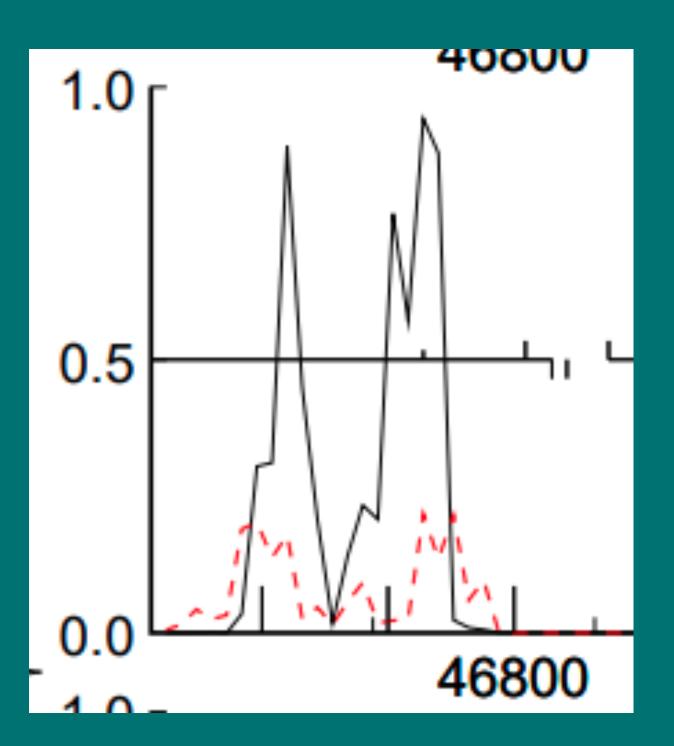


Introduction

Bioinformatic research is increasingly important due to the rise in antibiotic resistance in bacteria. This research focuses on the novel mycobacterium phage DuncansLeg (75,593 base pairs). Bioinformatic tools were used to annotate and confirm genes within the DuncansLeg sequence. Functionality was determined for genes by utilizing synteny data, as well as comparing nucleotide and protein products with other published phages.


Analytical Outline

Bioinformatic Annotation of Novel Bacteriophage DuncansLeg (L3)

Connor Hadwin and Michael Moore

Key Annotation: HNH Endonuclease in DuncansLeg

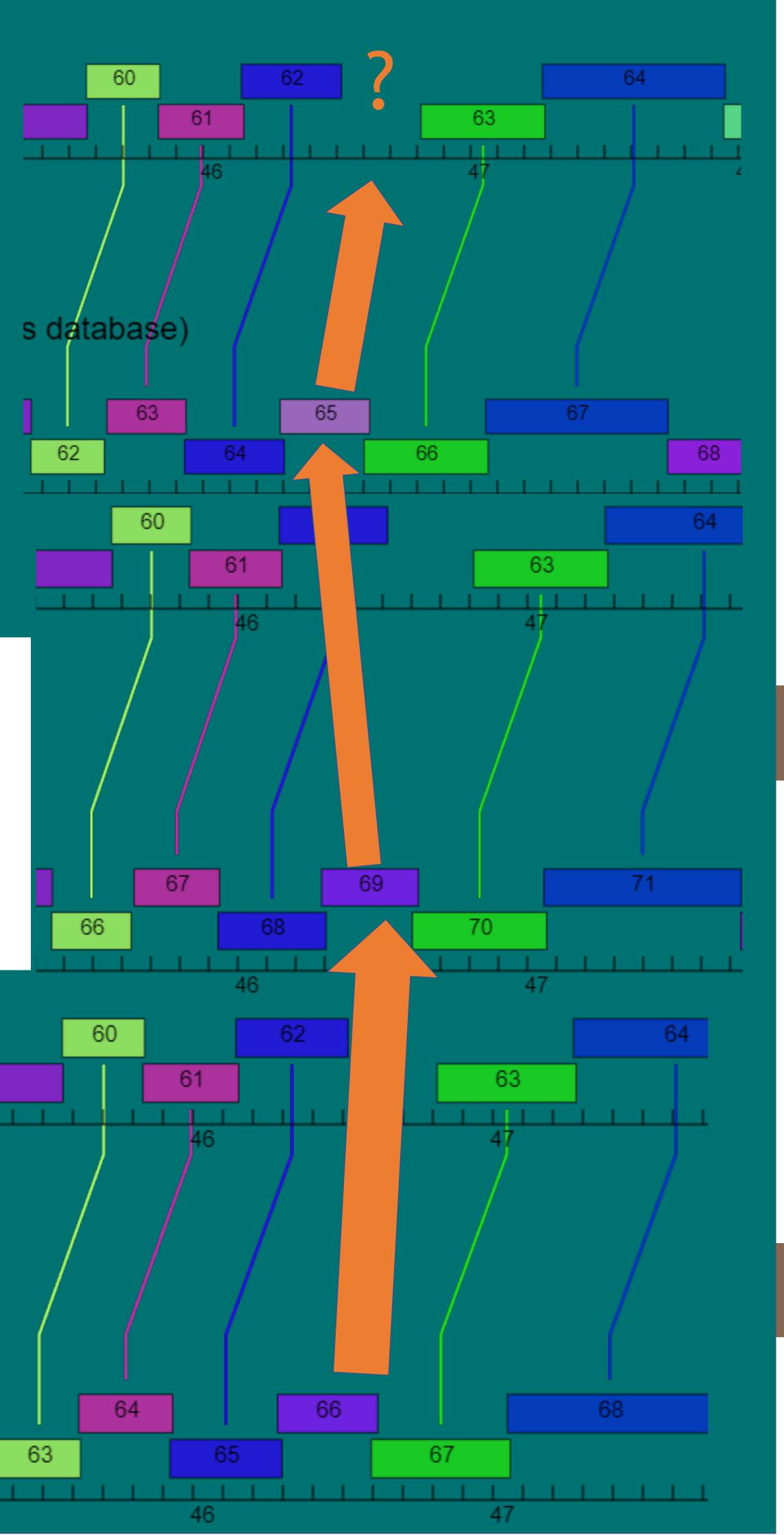
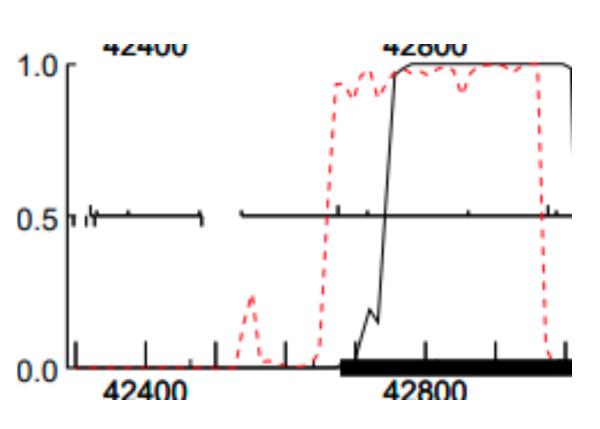


Figure 1: Coding potential from the GeneMark report on DuncansLeg was identified corresponding to a gene that wasn't initially identified. Coding potential strongly correlates to the presence of a gene at that base pair region. Coding potential is a good indicator that an uncalled gene is present.


Figure 2: Synteny data shows that this gene is highly conserved throughout the L3 subcluster. This gives strong evidence that the gene should be present in DuncansLeg, even if it wasn't initially called.

	HNH endonuclease, 110 ength = 110
	51 bits (640), Expect = 5e-67 = 108/110 (98%), Positives = 110/110 (100%)
	MASGEAACRRLIKPRSEGFCERCTAWGNLTLHHRKKRSQGGLWTADNCVLLCGHGTTGCH 60 MASGEAACRRLIKPRSEGFCERCTAWGNLTLHHRKKRSQGGLWTADNCVLLCGHGTTGCH
jct: 1	MASGEAACRRLIKPRSEGFCERCTAWGNLTLHHRKKRSQGGLWTADNCVLLCGHGTTGCH 60
-	GWIEHHPDLAEAEGWHVRPWQEPSEVPLLWRGNEWVLLTPEGTMNDYHVG 110 GWIEHHPDLAEA+GWHVRPWQEPSEVP+LWRGNEWVLLTPEGTMNDYHVG
dict: 61	GWTEHHPDLAEAOGWHVRPWOEPSEVPVLWRGNEWVLLTPEGTMNDVHVG 110

Figure 3: A pBLAST compares this sequence to genes of other annotated phages, and reveals that the protein products are identical. This is further strong evidence that this gene both exists and has the same HNH endonuclease function.

Starl	ts : 5	ORF Start	: 46145	Cdn 1	Cdn2 Cdn	3 Length		oring Mati	rix Kible	-C
Selected : 1		ORF Stop : 46516 5		5' End 22.2	55.6 77.8	3 27	- 3D 3C	unny mau		;1O
		ORF Lengt	h:372 :	3' End 64.5	42.7 70.2	2 372	Spacin	g Weight	Matrix Karlir	n Medium
Sta	Raw SD	Genomic	Spacer	Final	Sequence	of the	Region	Start	Start	ORF
#	Score	Z Value	Distance	Score	Upstream	of the	Start	Codon	Position	Length
1	-4.595	1.737	8	-5.817	GCGCTTAG	CTTGCCGG	STTCCTG	TTG	46118	399
2	-1.418	3.299	8	-2.640	TTCGCGGA	AGAACAGO	GAGCCTA	GTG	46145	372
3	-7.572	0.274	9	-8.347	GCGCGCTT	ATGCCCGG	GCTTTC	ATG	46304	213
4	-3.061	2.491	7	-4.584	CGCGAACA	TCGTCCCG	GAGGTC	ATG	46364	153
5	-4.516	1.776	9	-5.290	TATTCGCT	COCTTOC	ACCTTCC	GTG	46475	42

An HNH-endonuclease is called in 75% of L3 phages, yet three L3 phages do not call this gene despite coding potential, amino acid, and positional homology to the DuncansLeg gene. Future research is needed to determine if these phages also contain HNH endonuclease.

This research was performed under Dr. M. Cevasco, as part of the HHMI SEA-PHAGES program.

Tools and Methods Explained

Figure 4: RBS(Ribosomal Binding Site) data provides binding affinity estimates for each gene's potential starts.

Figure 5:

GeneMark indicates regions of coding potential within the genome

Description	Scientific Name	Max Score	Total Score	Query Cover	E value	Per. Ident	A
*	*	-	-	-	value •	Tuent	
protein J4T94_gp114 [Mycobacterium phage Krypton555]	Mycobacterium phage Krypton555	319	319	100%	7e-110	98.04%	1
protein N852_gp112 [Mycobacterium phage Whirlwind]	Mycobacterium phage Whirlwind	318	318	100%	2e-109	98.04%	1
protein AVU99_gp114 [Mycobacterium phage Lolly9]	Mycobacterium phage Lolly9	317	317	100%	2e-109	98.04%	1
protein AVU96_gp114 [Mycobacterium phage Snenia]	Mycobacterium phage Snenia	273	273	100%	9e-92	83.66%	1
protein AVT49_gp41 [Mycobacterium phage FlagStaff]	Mycobacterium phage FlagStaff	140	140	96%	3e-39	46.62%	1
protein [Mycobacterium sp. AZCC_0083]	Mycobacterium sp. AZCC_0083	138	138	96%	1e-38	47.40%	1
<u>protein [Mycolicibacterium sphagni]</u>	Mycolicibacterium sphagni	138	138	100%	3e-38	45.40%	1
protein I5G58_gp054 [Mycobacterium phage BirdsNest]	Mycobacterium phage BirdsNest	125	125	97%	3e-33	44.67%	1
protein PBI_INDLOVU_49 [Mycobacterium phage Indlovu]	Mycobacterium phage Indlovu	122	122	88%	6e-32	46.32%	1
protein A5717_26165 [Mycobacterium porcinum]	Mycobacterium porcinum	120	120	98%	1e-31	42.21%	1
protein [Mycolicibacterium vinylchloridicum]	Mycolicibacterium vinylchloridicum	112	112	98%	5e-28	42.04%	1
<u>protein [Mycobacterium goodii]</u>	Mycobacterium goodii	109	109	99%	6e-27	40.00%	1
protein [Chitinophagia bacterium]	Chitinophagia bacterium	108	108	97%	3e-26	41.18%	1
protein I5G62_gp53 [Mycobacterium phage CRB2]	Mycobacterium phage CRB2	102	102	87%	5e-24	45.32%	1

Figure 6: BLAST data shows sequence comparisons and alignment to all sequence data within the NCBI database.

Future Directions

Acknowledgements