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Abstract 

Routine bolt-loosening inspection plays an essential role in managing and preventing the 

degradation of our nation’s highway bridges over time. Neglecting to perform these inspections 

could result in public safety concerns. The study of this thesis develops a cost-effective method 

of bolt-loosening detection based on computer vision. To this end, two input images of the bolted 

connections are collected at two different inspection times. The feature points are then identified 

from the input images, based on which a geometric transformation matrix is applied to correct 

any perspective differences between the two images. Next, we select the image patches of the 

loosened bolt and apply the geometric transformation again to quantify the angle of the bolt 

head’s rotation. We validated our method through a laboratory test and test results show the 

success of our method in quantifying the loosened bolt. 

 

1. Introduction 

Routine bolt loosening inspection plays an essential role in managing and preventing the 

degradation of our nation’s highway bridges over time. Neglecting to perform these inspections 

could result in numerous bridges unnoticeably becoming public safety hazards. For example, 

aged bridges could be easily compromised by extreme flooding, and bridges located in seismic 

regions could be under significantly increased stress during the event of an earthquake [1]. 

Furthermore, many bridges are subjected to trucks that are heavier than they were originally 

designed to accommodate [1]. Ensuring the structural safety of these bridges for the public is the 

primary motivation for routine bolt-loosening inspection. Addressing any issues identified 

through bolt loosening inspection prior to the bridge reaching a critical state can significantly 

reduce the costs needed for repairs. [1]. 



Bolt loosening detection methods can be classified into three broad categories: sensor-based, 

percussion-based, and computer vision-based [2]. Sensor-based detection is the most common 

method used which involves placing sensors on the bolted connections and measuring a certain 

signal related to bolt loosening (e.g tension load) [3]. This method can be further divided into 

explicit and implicit detection. Explicit detection, such as with a strain gauge [4] or ultrasonic 

sensor [5], establishes a direct relationship between the sensor measurements and the tension 

load. Alternatively, implicit-based detection methods, could apply ultrasonic attenuation and/or 

excitation analysis [2], typically using a piezoelectric (PZT) ceramic sensor. A PZT sensor relies 

on the piezoelectric effect to produce an electrical impendence dependent on the stiffness of 

bolted connections [6]. The data collected from a PZT sensor does not have a clear, explicit 

mathematical relationship to the tension in the connection and thus may require more extensive 

interpretation [2]. 

  

The second category of bolt loosening detection methods is percussion-based. This method is 

executed by tapping a steel bolt with an impact tool to produce a sound with specific frequencies 

correlated to the bolt tension load. Traditionally, this method would require an experienced 

technician to listen and interpret the frequencies produced [7], recent methods first record the 

original sound generated following impact. The features can then be extracted to perform 

analyses and determine the state of the bolt [6], limiting the need for human interaction. This has 

been accomplished in many different ways such as finding the feature details by utilizing the 

power spectral density (PSD) of the original audio with a selected frequency segment and using a 

decision-making tree to determine the degree of looseness [7]. Another method performs an 

intrinsic entropy analysis and machine learning techniques to determine the state of the bolt [8].  



Despite significant advancements in both sensor and percussion-based bolt loosening 

detections, substantial disadvantages can be found which may limit applications of these 

methods in practice. First, sensor and percussion-based bolt loosening detection methods require 

extensive human operations to place sensors on the appropriate bolt or bolted regions which 

could be time-consuming and labor-intensive. Additionally, many sensors may be highly 

sensitive to temperature, humidity, and loud noise [6], making results prone to error. Lastly, 

Kong et al. [7] propose integrating robotics to perform percussion-based bolt loosening 

detection. Although this technique is less labor-intensive, integrating robotics into this method 

may substantially increase costs.  

  

Computer vision-based bolt loosening detection methods typically use digital images combined 

with image processing and/or machine learning techniques to determine the status of the bolt. 

These digital images may be collected through DSLM cameras, smartphone cameras, or 

unmanned aerial vehicles (UAVs). Computer vision-based bolt loosening methods have made 

significant advances in the past several years. Huynh et al. [9] implemented a trained regional 

convolutional neural network (RCNN)-based deep learning algorithm which initially detects and 

crops the individual bolts from the image prior to using the Hough transform to extract the 

features of the bolt and calculating the bolt angle. Kong et al. [10] use feature-based and 

intensity-based image registration techniques to determine if a bolt had undergone a loosening 

event. Vision-based bolt loosening detection methods have several advantages over the other 

previously discussed methods such as being extremely cost-effective and requiring a limited 

amount of human interaction. Additionally, vison-based methods are more resilient to 

environmental factors and still yield accurate detection results [2]. 



The bolt loosening detection method developed in this thesis builds upon a previously 

established image-based feature tracking approach (Kong and Li [11]) which established 

preliminary results for bolt loosening detection through feature tracking. However, this study can 

only offer binary bolt loosening detection results (loosened vs. unloosened), which was limited 

by its inability to quantify the angle of bolt rotation between images. In this thesis, we provide a 

novel solution for addressing such a limitation by developing vision-based algorithms that can 

identify the angle of bolt rotation. The findings of this thesis could serve as a valuable diagnostic 

tool that provides a measurement of the damage status of the bolt, aiding in a more informed 

decision-making process regarding structural repairs and/or damage control. 

 

2. Methodology 

Figure 1 illustrates our proposed vision-based bolt loosening detection method. Briefly, two 

input images of the bolted region are taken by a digital camera at two inspection periods. Then, 

the feature points in the input images are identified through the Shi-Tomasi feature detection 

algorithm (Section 2.1). These feature points are matched between two input images. To align 

the two images in the same coordinate system, a geometric matrix estimation is performed as 

will be described in Section 2.2. Thereafter, image patches of the loosened bolt between 

inspection periods are manually cropped for estimating the angle of rotation. To this end, the 

same procedure is applied to the cropped bolt images to detect feature points and estimate 

another geometric matrix transformation between image patches, based on which the angle of 

rotation of the bolt is recovered. 



 

Figure 1. A flowchart depicting each step of the proposed vision-based bolt loosening detection method 

 

2.1 Feature Detection 

To align two images with similar perspectives into the same coordinate system, feature points 

(i.e., interest points) that contain robust image content information must be identified. Ideally, a 

feature point is distinct from its surroundings, making it identifiable regardless of a change in 

perspective. There are a variety of techniques that have been used to identify feature points, one 

of which is corner detection. In both Harris corner detection [12] and Shi-Tomasi corner 

detection [13], the first step is identifying small windows of the image that may contain corners. 

If the window contains a corner, it is expected that there will be a large intensity change when 

the window is slightly shifted in any direction.  

 

Considering the center coordinates of a small window of the original image as (x, y) and a 

differential displacement in some direction as (u, v), the intensity at each location is Ix,y, and 

Ix+u,y+v respectively. A mathematical relationship to quantify this average change in intensity, E, 

where w is the weights of pixels over the region is shown below. 



 

𝐸௨,௩ ൌ   𝑤௨,௩ ሾ𝐼௫ା௨,௬ା௩ െ  𝐼௫,௬ሿଶ

௫,௬

 

 

Given that this expression can be cumbersome and computationally expensive, a first-order 

Taylor series expansion is used to approximate this intensity change into the expression shown 

below where 𝑔௫ and 𝑔௬ are the intensity derivatives in the x and y directions respectively [13]. 
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Once windows with considerably large gradients are detected, corners in these regions are 

identified by finding the eigenvalues of the matrix M and testing these values against a 

predetermined threshold. Two small eigenvalues correspond to a roughly constant intensity 

profile within a window while a large and a small eigenvalue correspond to a unidirectional 

texture pattern. Two large eigenvalues can represent corners, salt-and-pepper textures, or any 

other pattern that can be tracked reliably [13]. The mathematical formulation of this idea is 

presented below where 𝜆ଵ and 𝜆ଶ are the eigenvalues of M and 𝜆 is the predetermined threshold 

[13]. 

minሺ𝜆ଵ, 𝜆ଶሻ   𝜆 

 



Lastly, the eigenvalue threshold must be determined and the corner feature points detected by 

this algorithm are identified and marked on the image for visual confirmation. 

 

2.2 Geometric Transformation 

The computational vision-based bolt loosening detection method implements a geometric 

transformation estimation for perspective and distortion correction before investigating the state 

of the bolt. Between inspection periods, the images of the bolted connection may be captured 

from slightly different perspectives. The images may differ by translation, rotation, scaling, 

shear, tilt, or typically, a combination of these factors. Given two images taken from slightly 

different perspectives, specific points such as the edge of a bolt or markings on the bolt head are 

identified following the method outlined in section 2.1. After the initial feature points are 

detected, the coordinates of these points are extracted and used to determine the transformation 

matrix that maps the points from the first image to the second image, which will later be used to 

correct any perspective distortion.  

 

Since images taken at different perspectives may differ by translation, rotation, etc., the most 

suitable geometric transformation to estimate is a projective transformation since it has 8 degrees 

of freedom (DOF). Due to the computational nature of combining multiple transformations, the 

coordinates of the feature points must first be expressed as homogenous coordinates. If the 

Cartesian coordinates of a feature point are (x, y), the equivalent point in homogenous 

coordinates is (x, y, 1), or the same coordinate with the third element of 1. Additionally, 

converting any 2D homogenous coordinate back into Cartesian coordinates only requires 



dividing the first two elements by the third. The basic geometric transformations in homogenous 

coordinates are shown below.  

 


cos 𝜃 െ sin 𝜃 0
sin 𝜃 cos 𝜃 0

0 0 1
൩  Rotation 

 


𝑠 0 0
0 𝑠 0
0 0 1

൩ Scaling 

 

 
1 0 𝑥
0 1 𝑥ଵ
0 0 1

൩  Translation 

 

A geometric projective transformation is composed of several simpler transformations. The first 

is a similarity transformation which is scaling and rotation followed by a translation.  

 

A = 
𝑠 cos 𝜃 െ𝑠 sin 𝜃 𝑥
𝑠 sin 𝜃 𝑠 cos 𝜃 𝑥ଵ

0 0 1
൩  Similarity transformation 

 

The second transformation is the shear transformation, B, where k is the shear element.  

 

B = 
1 𝑘 0
0 1 0
0 0 1

൩  Shear transformation 

 



Next, is a diagonal matrix, C, that scales the x and y directions by 𝜆 and 
ଵ

ఒ
 respectively, 

essentially preserving the area of planar scaling.  

 

C = 
𝜆 0 0
0  ଵ

ఒ
0

0 0 1

  Scaling transformation 

 

Finally, an elation transformation, D, essentially scales points directly towards or away from the 

origin by a scaling factor. 

 

D = 
1 0 0
0 1 0
𝑣ଵ 𝑣ଶ 𝑣

൩  Elation transformation 

 

Finally, the projective matrix transformation, H, can be expressed as a combination of these 

simpler transformations shown below. 

 

H = ABCD = 
𝑠 cos 𝜃 െ𝑠 sin 𝜃 𝑥
𝑠 sin 𝜃 𝑠 cos 𝜃 𝑥ଵ

0 0 1
൩ 

1 𝑘 0
0 1 0
0 0 1

൩ 
𝜆 0 0
0  ଵ

ఒ
0

0 0 1

 
1 0 0
0 1 0
𝑣ଵ 𝑣ଶ 𝑣

൩ 

 

This can be further condensed and generalized into the transformation matrix shown below 

where the input column vector is the coordinates of the feature points in the original image and 

the output column vector is the coordinates of the feature points in the second image.  

 



ቈ
𝑢
𝑣
1

 ൌ  
ℎଵଵ ℎଵଶ ℎଵଷ
ℎଶଵ ℎଶଶ ℎଶଷ
ℎଷଵ ℎଷଶ 1

൩ ቈ
𝑥
𝑦
1

  

 

Given the appropriate coordinates (i.e., four or more feature points) [14], the geometric 

projective transformation can be estimated along with the inverse to align the two images in the 

same coordinate system and proceed with further bolt loosening analyses.  

 

3. Results and Discussions 

3.1 Experimental Setup 

   
(a) (b) (c) 

Figure 2. (a) The front side of the steel plate; (b) the back side of the steel plate; and (c) the application 
of a protractor to manually measure the angle of rotation. The bolts, washers, and nuts are shown in (a) 
and (b). 

 

The experimental setup consists of a 12 in by 18 in by 0.25 in steel plate shown below in Figure 

2 with 2.25 in long, grade A325 steel bolts, 0.75 in diameter washers, and 0.75 in diameter nuts. 

The images were captured with an iPhone 11 camera with the F-stop value set to 6.3. The images 

have a resolution of 840 pixels by 1320 pixels and were captured from approximately 1.5 ft away 

from the steel plate. To validate the results of this method, the actual angle of rotation of the 

loosened bolt was manually measured using the protractor shown in Figure 2c and compared to 

the results obtained from the vision-based method. 



3.2 Test Results and Discussions 

The two input images used to validate our proposed method consists of one image of the steel 

plate at initial status (Figure 3a) and the second image where a bolt was manually rotated 3° 

clockwise shown in the second row and second column in Figure 3b. The two input images were 

taken under a room ceiling lighting condition and the camera was held directly above the plate to 

prevent harsh shadows or glaring with the flash turned off. The bolt located in the center of the 

plate (i.e., located in the second row and the second column in Figure 3b) was slightly rotated 

between the two photos while the remaining four bolts were left untouched. 

 

  
(a) (b) 

Figure 3. Two input images to validate our proposed bolt loosening detection method. The bolt on the 
second column and row is manually loosened counterclockwise. 

 

Our image processing workflow starts with Shi-Tomasi feature detection which is shown in 

Figure 4a. Thereafter, the feature points matched between the two images are shown in Figure 

4b. where the red circles are the feature points from the first input image and the green crosses 

are the same feature points identified in the second input image. The matched feature points are 

then used to estimate the geometric transformation matrix, which is applied to the second input 

image to align two input images into the same coordinate system shown in Figure 4c. Magnified 

images of the loosened bolt at each step in Figure 4 are shown in Figure 5. Figure 5c shows the 



rotational movement of the bolt where the feature points did not follow the same movement 

pattern and were therefore excluded from the alignment process. 

 

(a) (b) (c) 
Figure 4. The feature points detected (left), the matched feature points between the two images 
(middle), and the images aligned in the same coordinate system (right) 

 

   
(a) (b) (c) 

Figure 5. (a) Magnified view from Figure 4a; (b) magnified view from Figure 4b; and (c) magnified 
view from Figure 4c. Magnified views are taken from the region of the loosened bolt. 

 

By observing the rotational movement of the feature points on the loosened bolt after alignment 

(Figure 5c), the loosened bolt was manually identified from the image to further quantify the 

angle of rotation. To this end, the image patch containing only the bolt was selected and cropped 

from two input images shown in Figures 6a and 6b. Next, the feature points on the bolt head are 

detected shown in Figure 6c. Finally, those feature points are matched between the two images 

shown in Figure 6d. Since the two input images now lie in the same coordinate system as a result 



of the alignment process previously discussed, the geometric transformation estimated from the 

feature point movement indicates the bolt head rotation. Finally, the rotational angle of the bolt 

head is recovered from the geometric transformation matrix. 

 

    
(a) (b) (c) (d) 

Figure 6. (a) and (b) are cropped image patches from the bolt head from two input images after image 
alignment; (c) shows the detected feature points in the first input image; (d) shows matched feature 
points between two input images after image alignment. 

 

The results from the MATLAB code returned the recovered angle for the previously described 

dataset as 3.0188°. The angle of rotation measured with the protractor shown in Figure 7 was 

recorded as 3°. The percent error between these two values is 0.627%. This indicates that the 

method described could provide accurate results for quantifying the angle of bolt rotation where 

the perspective difference between input images is relatively small and where the bolt does not 

rotate significantly between inspection periods. More testing is needed to confirm the accuracy 

of this method for larger rotation angles and circumstances where the perspective shift between 

input images is more drastic. 



 
Figure 7. The manually measured bolt 
rotation angle using a protractor 

 

4. Conclusions 

Routine bolt-loosening inspection plays an essential role in managing and preventing the 

degradation of our nation’s highway bridges over time. The purpose of this thesis was to develop 

a novel bolt loosening detection method that is capable of quantifying the angle of bolt rotation. 

A laboratory test was conducted to validate our method using a steel connection plate. Our 

proposed method was able to detect the angle of rotation with a 0.627% error from the manually 

measured rotation angle.  This proposed method provides the ability to both identify loosened 

bolts and quantify the angle of rotation. The findings of this thesis could serve as a valuable 

diagnostic tool that provides measurements of the damage status of the bolt, aiding in an 

informed decision-making process regarding repairs and/or damage control. Further work will 

focus on investigations of the viability of our method against varied lighting and perspective 

changes between input images. 
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