
Coastal Carolina University Coastal Carolina University

CCU Digital Commons CCU Digital Commons

Honors Theses Honors College and Center for Interdisciplinary
Studies

Spring 2021

Dijkstra’s Pathfinder Dijkstra’s Pathfinder

Taylor F. Malamut
tfmalamut@coastal.edu

Follow this and additional works at: https://digitalcommons.coastal.edu/honors-theses

 Part of the Theory and Algorithms Commons

Recommended Citation Recommended Citation
Malamut, Taylor F., "Dijkstra’s Pathfinder" (2021). Honors Theses. 423.
https://digitalcommons.coastal.edu/honors-theses/423

This Thesis is brought to you for free and open access by the Honors College and Center for Interdisciplinary
Studies at CCU Digital Commons. It has been accepted for inclusion in Honors Theses by an authorized
administrator of CCU Digital Commons. For more information, please contact commons@coastal.edu.

https://digitalcommons.coastal.edu/
https://digitalcommons.coastal.edu/honors-theses
https://digitalcommons.coastal.edu/honors
https://digitalcommons.coastal.edu/honors
https://digitalcommons.coastal.edu/honors-theses?utm_source=digitalcommons.coastal.edu%2Fhonors-theses%2F423&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/151?utm_source=digitalcommons.coastal.edu%2Fhonors-theses%2F423&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.coastal.edu/honors-theses/423?utm_source=digitalcommons.coastal.edu%2Fhonors-theses%2F423&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:commons@coastal.edu

Dijkstra’s Pathfinder

By

Taylor Malamut

Information Systems

Submitted in Partial Fulfillment of the
Requirements for the Degree of Bachelor of Science

In the HTC Honors College at
Coastal Carolina University

Spring 2021

Louis E. Keiner
Director of Honors
HTC Honors College

Paul S. Cerkez
Visiting Assistant Professor
Department of Computing Sciences
Gupta College of Science

Dijkstra’s Pathfinder

2

Abstract

Dijkstra’s algorithm has been widely studied and applied since it was first published in 1959.

This research shows that Dijkstra’s algorithm can be used to find the shortest path between two

stations on the Washington D.C. Metro. After exploring different types of research and applying

Dijkstra’s algorithm, it was found that the algorithm will always yield the shortest path, even if

visually a shorter path was initially expected.

 Keywords: Dijkstra, graph theory, washington metro, public transportation

Dijkstra’s Pathfinder

3

Contents

ABSTRACT .. 2
CHAPTER 1 ... 4

INTRODUCTION .. 4
Problem Statement .. 4
Relevance and Significance .. 4

CHAPTER 2 ... 5
REVIEW OF THE LITERATURE ... 5

CHAPTER 3 ... 9
METHODOLOGY ... 9

Content Delivery ... 9
First Steps ... 9
GUI Creation ... 10
Testing .. 10

CHAPTER 4 ... 12
RESULTS AND DISCUSSION ... 12

Same Line ... 12
Different Line .. 12
GUI Results ... 12

CHAPTER 5 ... 13
CONCLUSION AND RECOMMENDATIONS ... 13

Conclusion .. 13
Future Work ... 13

REFERENCES ... 15
APPENDIX A ... 16

Brief Introduction to Graph Theory .. 16
Dijkstra’s algorithm .. 16

APPENDIX B ... 18
WASHINGTON D.C. METRO MAP ... 18

APPENDIX C ... 19
RESULTS FROM TESTING .. 19

APPENDIX D ... 20
GRAPHICAL USER INTERFACE .. 20

Dijkstra’s Pathfinder

4

Chapter 1

Introduction

Problem Statement

 The problem of finding the shortest path between point A and B has been prevalent for

centuries. Because of more advanced transportation, its importance has grown exponentially.

Transportation systems, notably the subway/metro, can be confusing to navigate. This problem

was chosen because of foundational knowledge of graph theory and interest in exploring a

pathfinding algorithm. The project used Dijkstra’s algorithm to meet the goal of finding the

shortest path between two stations on the Washington D.C. Metro.

Relevance and Significance

 Locals and tourists alike use the Washington Metro every day. Therefore, it is important that

they can navigate the metro efficiently. Dijkstra’s algorithm is used for applications like routing

protocols and telephone networks (Kumar, 2020). Also, Dijkstra’s algorithm is actively being

used for new advancements such as delivery drones (Kumar).

Barriers and Issues

 As transportation systems add more stations, this raises an issue with the relevance of the

project in the future. As this project’s lifespan was only one semester, there was no plan to take

that into account. Another barrier is that sometimes all trains are not functional, or lines are

under maintenance. As the project’s main purpose is to implement one algorithm, this was not

addressed. Finally, the scope of this project is rail, and did not include any other transportation

system.

Dijkstra’s Pathfinder

5

Chapter 2

Review of the Literature

Introduction

 Dijkstra’s algorithm is used for a wide array of applications. Therefore, it was important to

explore different types of research about Dijkstra’s algorithm. The sources in this chapter were

obtained by using Coastal Carolina University’s student access to the ACM (Association for

Computing Machinery) and IEEE (Institute of Electrical and Electronic Engineers) databases.

Also, the literature review touches on the importance of the Washington D.C. Metro system.

Mumbai’s BEST Bus System

 Although Dijkstra’s Pathfinder does not use the bus system, it is important to look at how

Dijkstra’s algorithm has been applied to similar problems. Kejriwal and Temrikar (2019) explore

how the algorithm can be used to find the shortest path between two stations in Mumbai’s BEST

bus system. Kejriwal and Temrikar pointed out that recent studies have shown that commuters

can waste an average of fifteen minutes because of their lack of knowledge on the fastest

possible route. The authors also discuss that edges on the graph should be bidirectional and that

applies to Dijkstra’s Pathfinder as well. Additionally, they made similar assumptions like that all

buses are functional and there are no obstacles on the road.

Dijkstra’s Algorithm for a Proposed Tramway

 Agarana, Omoregbe, and Ogunpeju (2016)’s research focuses on a tramway in a university

system. Trams are rail-based and run-on streets - the largest one being in Melbourne, Australia

(Agarana, Omoregbe, & Ogunpeju). They point out that Dijkstra’s algorithm can be used with

Dijkstra’s Pathfinder

6

some assumptions, like edges having non-negative weights. Also, there are two common variants

of the algorithm. The original algorithm is finding the shortest path between two nodes, while

another version is finding the shortest path from a singular source node to every other node in the

graph (Agarana, Omoregbe, & Ogunpeju). For Dijkstra’s Pathfinder, the original algorithm will

be used.

Routing Processes

 Dijkstra’s algorithm can be used to solve different kinds of routing problems. For instance, it

is used for network related protocols and applications like Google Maps (Gupta, Mangla, Jha, &

Umar, 2016). Dijkstra’s algorithm can also be used for file servers by decreasing the number of

“hops” from a server to all of the computers on that network (Gupta, Mangla, Jha, & Umar). The

algorithm is useful when planning paths for a robot. The robot is given a source and destination

address from a remote server using IEEE’s standard communication protocol (Gupta, Mangla,

Jha, & Umar). Then, the robot will move in the given direction. Finally, it can be used when

creating flight agendas given the departure and arrival time and the distance from the origin

airport.

Airline Network Planning

 Planning flights is an important effort that constantly needs to be optimized. Yan and Jun

(2010)’s research focuses on optimizing the airline network planning process by use of Robust

Optimization and Dijkstra’s algorithm (Yan & Jun). The combination of these two algorithms is

needed because of the rapid growth of air traffic volume. The main part of their paper is about

selecting hub airports and having it be properly allocated in a way that some operating costs of

the network are minimized (Yan & Jun). This includes variables like load distance and travel

Dijkstra’s Pathfinder

7

cost. Their paper goes into detail about the Deviation Robust Optimization method, but that is

not applicable for Dijkstra’s Pathfinder.

 Dijkstra’s algorithm is used as a way to improve the initial solution and neighborhood

structure (Yan & Jun). Yan and Jun also pointed out that their Deviation Robust Optimization

Method uses Dijkstra’s algorithm to get the best connection status between each pair of cities.

Multi-layered Social Networks

 Dijkstra’s algorithm, as seen previously in this chapter, is mainly used for routing problems.

Another way that the algorithm has been implemented is through analyzing social networks.

Social networks can be described as a finite set of actors (nodes) and relationships (edges) that

link the actors (Brodka, Stawiak, & Kazienko, 2011). There are different types of networks that

can be expressed like corporate partnerships, scientist collaboration networks, and friendship

networks (Brodka, Stawiak, & Kazienko). The most notable of these networks are online social

networks on social media websites like Facebook. Their research does a variation on the

algorithm to fit their needs (involving pre-processing) in order to extract shortest paths.

Music Retrieval

 Another case study is the use of Dijkstra’s algorithm in non-traditional ways. The Echo Nest

corporation is owned by Spotify and focuses on music retrieval and development. They provide a

number of retrievals, search, and interactivity tools to places like music stores and record labels

(Jehan, Lamere, & Whitman, 2010). Their platform contains tools like audio signal processing,

machine learning, natural language processing, and graph manipulation.

 For graph manipulation, they have been able to generate playlists using graphs. The playlist is

generated by building a directed graph that represents nodes as musicians and edges as

similarity. Then, Dijkstra’s algorithm is used to find the shortest path between two musicians

Dijkstra’s Pathfinder

8

(Jehan, Lamere, & Whitman). Because of user constraints like desired musician familiarity and

exclude lists, the edges’ weights have to be adjusted dynamically. A playlist can be created by

having the edges to musicians with a high familiarity yield the lowest cost (Jehan, Lamere, &

Whitman).

Why Metro Matters

 The main purpose of Dijkstra’s Pathfinder is to produce the shortest path. However, it would

be a mistake to not include a section in this chapter on the importance of the real-life

implementation. The presence of the metro increases access to jobs and businesses. Two million

jobs (fifty-four percent of all jobs in the region) are within a half mile radius of all metro rail and

bus stations (WMATA, 2012). Also, it makes the region affordable and livable. According to

WMATA (Washington Metropolitan Area Transit Authority), the metro saves all households 705

million dollars a year in time savings. If a transit system did not exist, congestion would increase

by twenty-five percent and cost more than 1.5 billion dollars annually in wasted time and fuel

(WMATA).

Summary

 The first four sources directly describe how Dijkstra’s algorithm is used for navigation. The

Multi-layered Social Networks and Music Retrieval sections explain how Dijkstra’s algorithm

can be used for other applications successfully. Finally, the last source explains the importance

of the Washington D.C. Metro system. The literature guided this project by providing tangible

research on how Dijkstra’s algorithm can be used for pathfinding. Moreover, it was important to

include research that uses Dijkstra’s algorithm for other purposes to bring in additional context

on the diverse number of applications of the algorithm.

Dijkstra’s Pathfinder

9

Chapter 3

Methodology

Content Delivery

 The content was delivered as a desktop application. The project used Java SE (Standard

Edition) 15.0.2, which was the latest release by Oracle. Java Swing, a GUI (Graphical User

Interface) toolkit, was used to develop the frontend of the application. Swing is included in the

Oracle JDK (Java Development Kit). In the GUI, users are able to pick a starting and stopping

station. Then, the algorithm finds the shortest path between the two stations and displays the list

of stations to visit. Because of efforts related to getting the algorithm completed, the dynamic

GUI originally proposed did not get implemented due to time constraints by the end of the

semester and is now described in the Future Work section of Chapter 5. After receiving

permission from the instructor of this course, Eclipse was used as the IDE (Integrated

Development Environment).

First Steps

 The first step was to collect the names of all of the stations. The purpose of having all of the

stations in a text file was to have it read in by the drop-down menus. Afterwards, the rest of the

text files were created, including the edges for each line. Next, the base files were created. The

Vertex class represents a single station, and the Edge class represents the weight/distance

between each pair of stations. Next, the Dijkstra class was created to compute the shortest path.

Originally, a Graph class was created to represent the vertices and edges. However, it was found

that it created unnecessary obstacles. Instead, it was easier to use the Vertex and Edge classes

Dijkstra’s Pathfinder

10

directly in the Dijkstra class. An explanation of graphs, vertices, edges, and Dijkstra’s algorithm

can be found in Appendix A. Finally, the Tester class was created to pass in the two stations, call

the algorithm, and print the path.

GUI Creation

 The Tester class was renamed to Display to properly communicate that class’s purpose. The

GUI class was created to be executed from the Display class. The two drop-down menus were

populated with all of the stations from the text file described in the First Steps section of this

chapter. Next, the go and reset buttons were created. The go button is responsible for calling the

algorithm once the user makes a valid selection (two non-identical stations). See Figure 4 in

Appendix D for an example of what the user sees after clicking the go button with a valid

selection.

 If the user tries to click the go button without selecting a starting and/or stopping station, a

pop-up message is displayed instructing the user to make a valid selection (see Figure 2 in

Appendix D). Also, if the user selects two identical stations, a pop-up message is displayed

instructing the user to select non-identical stations and the drop-down menus are automatically

reset after the user clicks the ok button in the pop-up message box (see Figure 3 in Appendix D).

If the user selects the reset button, both drop-down menus return to their default positions, shown

on Figure 1 in Appendix D. The final step was to insert an image of the metro map. The image

can be found in Appendix B. Also, see Figure 1 in Appendix D for the initial starting screen with

a full view of the map.

Testing

 The algorithm, described in Appendix A, was tested on a subset of the metro before including

the entire system. First, a portion of the Red Line was used to test when the two stations are on

Dijkstra’s Pathfinder

11

the same line. Then, the entire Red Line was included to conclude the testing of that

functionality. To test when the two stations are on different lines, the Silver Line was used with

the Orange Line. Once that was functioning correctly, the rest of the lines were added one-by-

one.

 The GUI was tested by first ensuring that the drop-down menus contained every station. After

checking the menus, it was important to make sure that the user cannot execute the algorithm if a

valid selection is not made. If the user clicked the go button without selecting a station for either

menu, the pop-up message was displayed properly each time and testing concluded for that

feature. The other pop-up message described in the GUI Creation section was tested similarly.

Finally, the path display was tested by ensuring that it matched the path computed when testing

without the GUI.

Dijkstra’s Pathfinder

12

Chapter 4

Results and Discussion

Same Line

 If two stations are on the same line, the intermediate stations were collected to yield the

correct path. The same line functionality was tested without the GUI and worked as expected.

Detailed results can be found on Table 1 in Appendix C.

Different Line

 Dijkstra’s algorithm became more involved when the two stations were not on the same line.

A description of the algorithm can be found in Appendix A. On Table 2 in Appendix C, the last

two cases worked as initially expected. The last case did use a different transfer station, but it did

not impact the total cost of the trip as either transfer station could have been used (see Appendix

B to view the map).

 On the other hand, the first two cases yielded a shorter path than initially expected. Although

visually another path was expected, Dijkstra’s algorithm found the actual shortest path. The

different line functionality was also tested without the GUI.

GUI Results

 The drop-down menus contain a verified list of all stations in the Washington D.C. Metro

system. In order to prevent errors, the system does not allow the start and stop stations to be the

same or not selected at all. The details of how the menus were constructed and tested can be

found in Chapter 3.

Dijkstra’s Pathfinder

13

Chapter 5

Conclusion and Recommendations

Conclusion

 In the results chapter, it can be seen that proper implementation of Dijkstra’s algorithm will

always yields the shortest path. Therefore, Dijkstra’s algorithm is the best tool for finding the

shortest path on the Washington D.C Metro. Based on this research, Dijkstra’s algorithm could

work for similar transportation systems. While the algorithm was done on a single metro system,

it would work for other metro systems by retrofitting the software for that particular metro

system (e.g., modifying text files). Additionally, it could also be used for navigating between

cities.

Future Work

 In order for the application to stay relevant, it is important to have a way to add new stations

and lines. Future capabilities could include a dynamic map and a way to visually see the path

traced on the map. Also, real-time updates about maintenance and weather delays could be added

to factor into travel times. Additionally, the application could take into account the size of each

train, capacity, and time of day. As rail is not the only transportation system in the Washington

D.C. Metro, buses could be added to the pathfinding functionality. Furthermore, taxies and other

ridesharing platforms like Uber and Lyft could be included as well. If travelling by bus or taxi,

there would need to be a way to determine the traffic level - the software could use Google

Map’s API (Application Programming Interface).

Dijkstra’s Pathfinder

14

 Currently, the software is delivered as a desktop application. For further ease of use, a mobile

implementation would be ideal for a commuter on the go. As the project was written in Java, the

most natural transition to a mobile application would be Android. Also, the application could be

expanded to include other cities’ transportation systems like the New York City Subway.

Furthermore, some commuters travel by water to arrive at their destination. Finally, the

application could include air for longer trips.

Dijkstra’s Pathfinder

15

References

Agarana, M. C., Omoregbe, N. C., & Ogunpeju, M. O. (2016). Application of Dijkstra Algorithm
to Proposed Tramway of a Potential World Class University. Applied Mathematics,
07(06), 496-503. doi:10.4236/am.2016.76045

Brodka, P., Stawiak, P., & Kazienko, P. (2011). Shortest Path Discovery in the Multi-layered

Social Network. 2011 International Conference on Advances in Social Networks Analysis
and Mining. Doi:10.1109/asonam.2011.67

Dijkstra, E. W. (1959). A Note on Two Problems in Connexion with Graphs. In Numerische

Mathematlk (Vol. 1, pp. 269-271). doi:10.1007/BF01386390

Gupta, N., Mangla, K., Jha, A., & Umar, M. (2016). Applying Dijkstra’s Algorithm in Routing

Process. International Journal of New Technology and Research (IJNTR, 2(5), 122-124.

Jehan, T., Lamere, P., & Whitman, B. (2010). Music retrieval from everything. Proceedings of

the International Conference on Multimedia Information Retrieval - MIR 10.
doi:10.1145/1743384.1743428

Kejriwal, A., & Temrikar, A. (2019). Graph Theory and Dijkstra’s Algorithm: A solution for

Mumbai’s BEST buses. The International Journal of Engineering and Science (IJES),
8(10), 1st ser., 40-47.

Kumar, D. (2020, August 21). Applications of Dijkstra's shortest path algorithm. Retrieved from

https://www.geeksforgeeks.org/applications-of-dijkstras-shortest-path-algorithm/

Naimzada, A. K., Stefani, S., & Torriero, A. (2009). Networks, topology and dynamics: Theory

and applications to economics and social systems. Berlin: Springer.

WMATA. (2012, February). Why Metro Matters. Retrieved from

https://www.wmata.com/initiatives/case-for-transit/

Yan, Z., & Jun, Z. (2010). Dijkstra’s algorithm based robust optimization to airline network

planning. 2010 International Conference on Mechanic Automation and Control
Engineering. doi:10.1109/mace.2010.5536824

https://www.geeksforgeeks.org/applications-of-dijkstras-shortest-path-algorithm/
https://www.wmata.com/initiatives/case-for-transit/

Dijkstra’s Pathfinder

16

Appendix A

Algorithmic Description

Brief Introduction to Graph Theory

 Before describing Dijkstra’s algorithm, it is important to briefly explain what a graph is. A

graph X is an ordered pair of sets where X = (V, E) (Naimzada, Stefani, & Torriero, 2009). V

represents the vertices (also known as nodes) and E represents the edges. Each edge connects a

pair of vertices. Also, edges can have weights associated with them. For example, weights can

represent distance or time. Visually, a graph can be represented by drawing the vertices as dots

and edges as lines between each pair of dots (Naimzada, Stefani, & Torriero, 2009).

Dijkstra’s algorithm

 Dijkstra’s algorithm was created by Dutch computer scientist Edsger Dijkstra in 1956 and

published in 1959. In his original paper, A Note on Two Problems in Connexion with Graphs,

Dijkstra proposed solutions to two problems in graph theory. The first problem asks to “construct

the tree of minimum total length between the n nodes (a tree is a graph with one and only one

path between every two nodes)” (Dijkstra, 1959). The second problem Dijkstra proposed was to

“find the path of minimum length between two given nodes P and Q.” The second problem was

solved first in 1956 and is the focus of this capstone project.

 Dijkstra points out the fact that “if R is a node on the minimal path from P to Q, knowledge of

the latter implies the knowledge of the minimal path from P to R.” In Dijkstra’s solution, “the

minimal paths from P to the other nodes are constructed in order of increasing length until Q is

reached.”

 Before explaining the algorithm further, Dijkstra lists how the nodes and branches (edges) are

subdivided into sets. Set A contains “the nodes for which the path of minimum length from P is

Dijkstra’s Pathfinder

17

known; nodes will be added to this set in order of increasing minimum path length from node P.”

Set B contains “the nodes from which the next node to be added to set A will be selected; this set

comprises all those nodes that are connected to at least one node of set A but do not yet belong to

A themselves.” Set C contains the rest of the nodes. Set I contains “the branches occurring in the

minimal paths from node P to the nodes in set A.” Set II contains “the branches from which the

next branch to be placed in set I will be selected; one and only one branch of this set will lead to

each node in set B.” Set III contains the rest of the branches.

 The following steps also originate from Dijkstra (1959). The first step is to consider all

branches connecting the node just transferred to set A with nodes R in sets B or C. If node R

belongs to set B, then it is investigated whether the use of the current branch yields a shorter path

from P to R than the known path that uses the branch in set II. If that is the case, it replaces the

branch in set II. Otherwise, the branch is rejected. If node R is in set C, then it is added to set B

and the branch is added to set II.

 Next, Dijkstra acknowledges that “every node in set B can be connected to node P in only one

way if we restrict ourselves to branches from set I and one from set II.” Therefore, each node in

set B has a distance from node P and the node with minimum distance from P is transferred from

set B to set A, and the corresponding branch is transferred from set II to set I. Next, return to the

steps described in the paragraph directly above until node Q is in set A. Then, the solution has

been found.

Dijkstra’s Pathfinder

18

Appendix B

Washington D.C. Metro Map

Dijkstra’s Pathfinder

19

Appendix C

Results from Testing

Start Stop Expected Total
Weight (mi)

Actual Total Weight
(mi)

Shady Grove Friendship Heights 13.5 13.5
Branch Ave Congress Heights 9.0 9.0
Huntington Pentagon 11.6 11.6

Table 1 - Same Line

Start Stop Expected
Transfer

Expected
Total
Weight (mi)

Actual
Transfer

Actual Total
Weight (mi)

McLean Waterfront Rosslyn +
Pentagon

17.0 L’Enfant
Plaza

16.5

Metro Center Waterfront L’Enfant
Plaza

2.4 Gallery Place 2.3

Brookland-
CUA

Waterfront Gallery Place 8.5 Gallery Place 8.5

McLean Minnesota
Ave

East Falls
Church

21.3 Stadium-
Armory

21.3

Table 2 - Different Line

Dijkstra’s Pathfinder

20

Appendix D

Graphical User Interface

Figure 1 - Start screen

Dijkstra’s Pathfinder

21

Figure 2 - Pop-up if Go clicked without selecting stations

Dijkstra’s Pathfinder

22

Figure 3 - Pop-up if Go clicked with two identical stations

Dijkstra’s Pathfinder

23

Figure 4 - Displaying list of stations

	Dijkstra’s Pathfinder
	Recommended Citation

	Abstract
	Chapter 1
	Introduction
	Problem Statement
	Relevance and Significance

	Chapter 2
	Review of the Literature

	Chapter 3
	Methodology
	Content Delivery
	First Steps
	GUI Creation
	Testing

	Chapter 4
	Results and Discussion
	Same Line
	Different Line
	GUI Results

	Chapter 5
	Conclusion and Recommendations
	Conclusion
	Future Work

	References
	Appendix A
	Algorithmic Description
	Brief Introduction to Graph Theory
	Dijkstra’s algorithm

	Appendix B
	Washington D.C. Metro Map

	Appendix C
	Results from Testing

	Appendix D
	Graphical User Interface

