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Variable Terms and Definitions 

Aggregation index (m-1): The reciprocal of the values that would represent the area inhabited if 

every data cell contained the mean density of fish (Urmy et al., 2012). 

Buoyancy Frequency (1/s): Local density stratification; Characterizes the strength of 

stratification in a water column (N) (Thorpe, 2007). 

Height mean (m): The height, or depth, of the analyzed domain. 

Normalized Bottom Hardness: Hardness of the substrate, as determined by the presence or 

absence of the epi-benthos (Siwabessy et al., 1999). 

Normalized Bottom Roughness: Roughness of the substrate, as determined by the smoothness 

or roughness of the seabed surface and the presence or absence of sand waves (Siwabessy et al., 

1999). 

Proportion Occupied: Proportion of the water column being occupied by fish (Urmy et al., 

2012). 

Sample Size: The number of replicates, indicated by ‘n’, used in the statistical tests. 

Sv Mean: Value proportional to the detected fish biomass in the water column (Boswell et al., 

2010).
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Abstract 

Understanding the physical and oceanographic differences across reef habitats can help 

researchers assess how those differences influence fish distribution and community structure, 

which leads to a better understanding of what a healthy reef system looks like. The traditional 

methods used to assess fish communities on temperate reefs are limited and often focus solely on 

either the reef structure or water column conditions alone. An assessment of both data sets would 

yield a more complete understanding of the ecosystem as a whole. In this study, Gray’s Reef 

National Marine Sanctuary (GRNMS) was surveyed both inside and outside a Marine Protected 

Area (MPA) using echosounder technology and a CTD profiler to assess physical and 

environmental controls of the reef and water column that may be driving reef fish communities. 

Physical characteristics of the reef such as bottom type and depth were able to be identified and 

classified, however they did not show a significant relationship with the fish parameters of Sv 

mean, proportion occupied, and aggregation index (p > 0.05). Stratification of the water column, 

identified from the CTD data, did have a significant relationship with the percentage of the water 

column being occupied by fish (p = 0.004). This suggests that the environmental conditions are 

the main drivers of temperate reef fish distribution however, differences in stratification between 

the analyzed tracks may have kept other controlling factors from being observed.  

Introduction 

Reef systems in both temperate and tropical environments are vital habitats when it 

comes to supporting marine life. They are made up of a mix of habitats that provide food and 

shelter to countless organisms in all stages of life (Fernandes et al., 2005). Supporting so much 



2 

biodiversity requires a complex system, one where physical and biological characteristics of the 

reef will act as controls on the marine life that is present (Ebeling & Hixon, 1991). By 

understanding these controls, the biological factors of the reef can be better assessed. 

One physical control on reefs is temperature. All marine organisms have certain 

physiological thresholds related to the temperature of their surroundings. When the conditions of 

the environment do not line up with physiological limitations of the organism, their behaviors 

may change, causing them to move to a new location that is better suited to their needs (Koslow 

et al., 2013). Alternatively, when temperatures are suitable for the organisms, they may be 

encouraged to gather in particular areas or exhibit certain behaviors (Koslow et al., 2013). A 

study of a temperate reef off the coast of North Carolina in the USA, found that how the 

temperatures changed with depth was an important factor in determining the structure and 

composition of the fish community, which included invasive lionfish (Pterois volitans), black sea 

bass (Centropristis striata), and spottail pinfish (Diplodus holbrookii) (Whitfield et al., 2014). 

By knowing how the temperature changed throughout the water column, researchers were able to 

predict how rising temperatures from climate change may change the local fish community 

structure, as tropical fish are able to move farther into warming temperate waters (Whitfield et 

al., 2014). Sea surface temperatures have also been found to influence the density of Pacific 

saury (Cololabis saira) in the western North Pacific, where the density of the species was highest 

in waters where the sea surface temperatures were between 7 – 15oC (Hashimoto et al., 2020). 

This knowledge was used to estimate the distribution and biomass of Pacific saury for population 

dynamics models (Hashimoto et al., 2020). Responses to water temperatures in fish structure 

occur in all types of marine environments and by knowing this physical control, it has been 

possible in past studies to predict the local biological factors of the habitat. 
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Reefs are also subjected to the physical control of salinity levels. Although the salinities 

of a reef may not vary on a daily or seasonal basis, like those that have been observed in 

estuaries, factors such as precipitation, currents, or surface mixing over the habitat can all 

influence the salinity levels in the water column and the depth of the pycnocline (Greenwood, 

2007). The pycnocline, in particular, may act as a barrier to certain fish species or larvae with 

narrow salinity tolerances, thus making it more difficult for them to navigate a stratified water 

column (Wellenreuther et al., 2008). One study did observe a correlation between increased 

salinity levels and increased abundances of several fish species, including Dentex dentex, annular 

sea bream (Diplodus annularis), and damselfish (Chromis chromis), in a coastal environment of 

the Mediterranean Sea (Aguzzi et al., 2015). The abundances of other species in the area showed 

a positive response to increased salinities, however the changes were also found to be correlated 

with increased temperatures, indicating that fish activity is not always tied to just one 

environmental parameter (Aguzzi et al., 2015). Unfortunately, many studies on the salinity 

tolerances of fish focus on estuarine species since they experience the most variability, but as 

these studies have shown, changes in the marine environments will also have an effect on the 

local fish fauna. By knowing the salinity tolerances of local species at all life stages and 

comparing those to changes in salinity levels throughout the water column and across seasons, 

researchers may be able to predict fish behavior based on this physical control. 

The structure of the reef itself is another physical control on the reef system. The 

location, climate, and depth of the reef can lead to a wide variety of reef structures, which in turn 

influence the fish fauna in the area (Ebeling & Hixon, 1991). In an acoustic survey of the 

northern Gulf of Mexico, one study found that acoustic estimates of fish biomass were highest 

right over the reef complex but then decreased as the distance from the structure increased 
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(Boswell et al., 2010). This was evident as fish biomass was highest in the region closest to the 

reef, where depths were greater than 10 meters, then decreased in the mid-water region with 

depths from 10 meters to 6.1 meters (Boswell et al., 2010). These results indicate that the 

presence of the reef structure will increase the biomass in the water column, but fish diversity 

and abundance may also change based on the bottom relief of the reef. A comparison between 

tropical and temperate reefs noted that tropical reefs exhibit a higher bottom relief due to the 

complexity in their structures that the coral skeletons provide, leading to an increase in habitat 

variety and spatial heterogeneity (Ebeling & Hixon, 1991). The differences between temperate 

and tropical reefs is also what leads to higher fish abundance and diversity in tropical reefs, as 

the high bottom relief bolsters the diversity of life around it (Ebeling & Hixon, 1991). Not only 

does the presence of a reef lead to an increase in fish biomass in the water column, but an 

understanding of the structure’s bottom relief can also provide a way to predict the expected fish 

abundance and diversity over the reef.  

Biological characteristics of a reef, or the lack of them, will also play a role in controlling 

fish fauna around the reef structure. A study at Gray’s Reef National Marine Sanctuary 

(GRNMS) off the coast of Georgia, assessed two different habitats, one of rippled sand and low 

relief and another with several mixed benthic habitat types, including sparsely and densely 

colonized live bottom (Kracker, 2007). The acoustic surveys of these habitats revealed that the 

mixed habitat of high relief had a fish biomass density approximately two orders of magnitude 

greater than the rippled sand habitat of low relief, in addition to showing a greater range in the 

sizes of targets detected in the water column above the mixed habitat (Kracker, 2007). The very 

presence of a colonized live bottom habitat leads to higher fish biomass and diversity. 
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One way to differentiate between bottom habitats is to assess their structures through an 

analysis of video data and sonar imagery and then categorize them based on differences in those 

structures, as they are often the most defining features of the reef (Kendall et al., 2005). When 

making these assessments however, the composition of the local community must also be 

considered, as the behaviors of these organisms living on temperate reefs help to shape the 

environment, often influencing the resulting habitat structure and functionality (Jones & Andrew, 

1993). For example, habitat formers, such as sedentary, encrusting organisms like macroalgae, 

are often ecologically dominant and will characterized the habitat while grazing or predatory 

organisms, known as habitat determiners, will control the presence or absence of the habitat 

formers (Jones & Andrew, 1993). Feeding habits, large aggregations of sedentary organisms, and 

interactions between organisms are all potential ways that the habitat may be changed by the 

biotic elements of the reef (Jones & Andrew, 1993). As the bottom habitat changes, do so the 

organisms that frequent it, so the more stable the environment is, the more stable the population 

will be (Ebeling & Hixon, 1991). 

With the scope and complexity of reefs, it is difficult to assess the characteristics relating 

to their biomass, bottom types, and water quality, as oftentimes the locations are difficult to 

access and conditions are too extreme for prolonged direct observation (Kracker et al., 2008). 

Likewise, the use of cameras is limited to a fixed location and identification must be performed 

manually, so data collection is often done through the use of acoustics (Kendall et al., 2005). 

Underwater acoustics has been an increasingly reliable way to document aspects of the oceanic 

environment such as fish abundance, bottom habitats, and other physical features beneath the 

surface and compared to past methods, it is relatively non-invasive (Misund, 1997). 

Echosounders mounted to ships or moorings transmit sound beams of frequencies between 12 
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kHz and 200 kHz and when the echo signals are reflected back to the source, the transducer is 

able to convert the backscatter signal into data that can be interpreted to learn more about the 

environment (Misund, 1997). This method lowers the level of disturbance that the environments 

experience, compared to when bottom or mid-water trawls are used, and records many different 

types of data from information on fish distribution to level of bottom hardness (Kracker, 2007). 

Use of acoustics can allow researchers to cover larger areas of a reef, including several different 

bottom types in their surveys, so that the sources of the data are varied and more representative 

of the study site (Kendall et al., 2005; Kracker, 2007). 

The environment of the fish is not just limited to the bottom habitats they rely on for food 

and shelter but also includes the conditions within the water column, such as temperature, 

conductivity, and pressure. The physical properties of these variables have already been 

established as components that exert some control on the biological and structural variables in a 

reef (Aguzzi et al., 2015). These properties however, change not only across time but also 

through space. The temperature at the surface of a body of water, for instance, is not always the 

same as the temperature of the bottom water, particularly in areas of greater depth. This applies 

to the other physical properties as well. To measure these properties, one commonly used method 

is to gather samples with a conductivity-temperature-depth (CTD) profiler. The CTD profiler 

collects readings on regular intervals from throughout the water column, so that the area might 

be characterized based on how it changes as the depth increases (Fakhrudin et al., 2019). By 

understanding the environmental gradients of the water column, through the use of a CTD 

profiler, researchers in a previous study were able characterize the differences in the conditions 

between a healthy reef system and one that has been damaged by anthropogenic and natural 

disturbances (Rowley, 2018). The data collected with this equipment characterizes the study area 
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in terms of environmental factors, such as the values of salinity, which can then be used to 

further understand what forces must be considered when assessing fish distribution patterns and 

behaviors. 

For this study, acoustic SONAR and CTD data were collected at GRNMS, a live-bottom 

reef that is located 20 nautical miles off the coast of Georgia, in the United States (Campanella et 

al., 2019). It was established as a zoned National Marine Sanctuary with a natural heritage 

conservation focus, several No-Take areas, and a general restriction on commercial and 

recreational fishing (NOAA, 2020). This means that the ecosystems included within GRNMS 

experience lower levels of disturbances and less interference from human impacts. Some of the 

most common fish fauna found throughout the reef include species of jacks and groupers such as 

almaco jacks (Seriola rivoliana) and scamp grouper (Mycteroperca phenax), as well as black sea 

bass (Centropristis striata) (Auster & Giacalone, n.d.). The reef bottom itself is mostly made up 

of unconsolidated sediments (75% of the bottom), the majority of which is rippled sand, while 

the remaining portion (25% of the bottom) is represented by sparsely colonized regions of flat 

bottom and densely colonized vertical ledges (Kendall et al., 2005). This system is a good 

representation of a live-bottom temperate reef, with a variety of habitats present to support a 

diverse population of marine fauna.  

The goal of this study was to assess the structures of a hard bottom reef, as well as the 

characteristics of the water column, and how they influence the presence of biological life on the 

reef. Structures of the reef that might have had some control over the fish community structure in 

the area include the bottom type, which was determined from acoustic values of bottom 

roughness and bottom hardness. Potentially influencing factors of the water column included the 

temperature and stratification in the water. Assessments of these factors help to determine if the 
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differences in biological life are related to the characteristics of the water column or to the reef 

structure. 

Methods and Materials 

Data Collection 

Data were collected from GRNMS between July 31st, 2018 and August 7th, 2018. For 

each survey track, data collection began between 0200 and 0300 GMT (1000 and 1100 EDT) and 

continued for about a 10-hour period into the morning. At that point, the surveys paused for a 

scheduled stop, before beginning again about 4 hours later to run for 1 hour, then stopping again 

for 5 hours, before continuing for a final hour of data collection. This was planned in such a way 

to allow for data collection to take place overnight, at noon, and at dusk. Stops in the surveys 

also allowed for diving activities to take place and underwater cameras to be deployed for other 

scientific studies. The tracks consisted of sets of five pre-determined latitudinal survey lines, 

each of which were repeatedly traversed around 8 to 10 times by the survey vessel during the 

overnight survey. The surveys at dawn, noon, and dusk covered one set of lines for the track. 

Survey lines for each track covered 0.5 nautical miles in length of reef area in a longitudinal 

direction, either inside or outside the boundaries of the local MPA (Figure 1). For the tracks used 

in this study, Track 05 In was collected first on 7/31/2018, then Track 41 Out was collected on 

8/2/2018, Track 40 In was collected on 8/4/2018, and lastly Track 01 Out was completed on 

8/7/2018. 

Along each track, an EK-60 Split Beam SONAR System collected data continuously with 

a 120 kHz transducer. Simultaneously, a Teyleyne Marine UCTD Underway Profiling System 
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was deployed while the ship was in transit along the tracks to collect water column data. A SBE 

911plus CTD collected more complete information on the water column, including dissolved 

oxygen (DO), at two locations, however data from one of the sites was omitted due to an error in 

the location of deployment relative to the rest of the track. 

Data Processing 

Raw SONAR data from the EK-60 echosounder were processed in Echoview. For each 

track, background noise was removed, a surface line and a bottom line were defined, regions of 

interference due to surface wave activity were labeled as unusable data, and integration and 

bottom classification data were extracted and exported. For more information on the settings and 

functions used, see Appendix 1. 

After the Echoview Automatic Bottom Classification function was run on each of the 

four tracks to determine the bottom types that appeared on the reef across each track, the 

resulting classifications indicated that there were anywhere between 2 to 5 automatically 

detected bottom classes for each of the tracks. However, a manual assessment of how those 

values appeared in clusters on a scatter plot and the range of data values they covered determined 

that there was not that much variability in the detected bottom types. By assessing the range of 

data values for each cluster, the number of bottom classes for each track were re-evaluated. 

Raw data files from the UCTD and CTD profilers were exported using Sea-Bird 

Scientific (SBE) Data Processing Software. This realigned the data to account for a delay 

between the temperature and conductivity sensors and saved the data in a format that allowed for 

importation into MATLAB for analysis and data processing. For more details on the programs 

and parameters used, see Appendix 2. 
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Data Analysis 

CTD Data, once loaded into MATLAB, were grouped based on the day the casts 

occurred with the variables exported from SBE (see Appendix 2). The function 

‘gsw_SP_from_C’ used the existing temperature and conductivity variables to calculate salinity 

data, which were added to the corresponding casts (McDougall & Barker, 2011). Latitude, 

longitude, and date-time values were added separately using information from the header files. 

Linear interpolation plots were generated for temperature and salinity data across each track to 

help describe the physical conditions of the water column. Potential density values were 

produced in MATLAB by running temperature and conductivity values through the function 

‘gsw_rho’, with a reference pressure of 0 decibars (McDougall & Barker, 2011). A MATLAB 

script was then written to smooth the potential density with a simple moving average and a 

window size of 2 meters. The new, smoothed values were used to calculate the buoyancy 

frequency (N) throughout the water column with units of 1/s, using the following standard 

formula, where the reference density (ρ0) is 1028 kg/m3, Δz is -0.25 m, and the density is the 

potential density as defined above: 

N = √−
1

ρ0

∂ρ

∂z
 

Integration files of SONAR data from Echoview were opened in MS Excel 2016 where 

they were assessed for variability. Any variables that did not vary across the tracks were 

removed from further analysis and those left were saved to new integration data files. The new 

files from Excel and the bottom classification files for each track were loaded into MATLAB. 
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Script functions of the program were used to align the data points based on their recorded time of 

collection and combine variables from both files into one table for each track.  

To assess the potential relationships between variables from the SONAR data and CTD 

data, a MATLAB script was used to identify the SONAR data points that were collected closest 

to each CTD cast. These values were combined into tables grouped by track and the script 

function ‘pca’ was used to generate a Principle Component Analysis for each data table. By 

assessing how the variables loaded into the biplots, the relationships between them could be 

explained. The lengths of the lines representing the variables indicated the strength of the 

contribution of the individual variables to each axis. Variables that loaded very similar to each 

other indicated that they had a proportional relationship with each other while those that loaded 

opposite, or nearly opposite, of each other were determined to be inversely proportional to each 

other. These were the potentially relevant relationships that were identified for each track. 

Variables loading 90o from each other indicated that there was no relationship between them. 

A two-tailed Pearson correlation test in MS Excel 2016 was used to assess the 

relationships between the variables using all SONAR data from all of the tracks. The 

relationships explored can be seen in Table 1. For each statistical test, a n = 4 was used to assess 

a significance level. This n-value represented the number of tracks assessed in this research and 

was the most conservative method of assessing significant to avoid potential pseudo-replication 

errors. Significance level was assessed at p < 0.05 for all paired correlations. 

Table 1: Variable relationships identified in the PCA biplots and explored in MS Excel 2016. 

X Variable Y Variable 

Bottom Roughness Aggregation Index 

Bottom Hardness Aggregation Index 

Bottom Roughness Proportion Occupied 

Bottom Hardness Proportion Occupied 
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Bottom Roughness Sv Mean 

Bottom Hardness Sv Mean 

Time Proportion Occupied 

Time Sv Mean 

Sv Mean Proportion Occupied 

 

Using MATLAB, line plots of Sv mean vs time and proportion occupied vs time from the 

acoustic data were generated to provide a visualization of how the values changed over time. The 

variable Sv mean was obtained from an equation, which took the log of the linear mean Sv, also 

known as the volume backscattering coefficient (sv), and then multiplied it by ten (“Echoview 

Help: Sv_mean,” 2020). The resulting values were proportional to the detected fish biomass in 

the water column (Boswell et al., 2010). On the plots for each track, more negative values mean 

there was less fish biomass while less negative numbers indicate there was more fish biomass. 

Proportion occupied reported the proportion of the water column being occupied by fish and was 

obtained through calculations using the height of the water column (H), the depth of a sample in 

the analysis domain (z), and the volume backscattering coefficient at z (sv(z)) (“Echoview Help: 

Proportion_occupied,” 2020; Urmy et al., 2012). The plots of these two variables helped to 

explain how the biological factors might be changing with time, as well as display those changes 

in a way that could be easily compared to changes in other variables. 

CTD data on the buoyancy frequencies were exported from MATLAB and opened in MS 

Excel 2016 with SONAR data on the fish variables of Sv mean, proportion occupied, and 

aggregation index. The maximum N value for each site was calculated to represent the point in 

the water column with the highest stratification. The statistical relationships between this ‘max 

N’ variable and the fish variables from Echoview were assessed using the same two-tailed 

Pearson correlation test as before. However, the n-value for these calculations was n = 37. This 
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was chosen so each CTD cast would be treated as a replicate. The SONAR data was assessed in 

groupings of every 100 pings and only the data from the group that was recorded closest to each 

of the CTD cast sites was used in the statistical analysis test. Significance level was assessed at p 

< 0.05 for all paired correlations. 

Results 

Bottom Classifications 

Across all tracks, there was variability in the number of bottom types classified. Tracks 

01 Out and 41 Out both had two distinct bottom types, while Tracks 05 In and 40 In had one 

bottom type each. Track 01 Out displayed two distinct groupings of data values, with one cluster 

of mostly green data points at high bottom hardness values (> 6) and low bottom roughness 

values (< 8.4) and the other cluster of mostly red points at medium bottom hardness values (5.6 – 

6.6) and high bottom roughness values (> 8.4) (Figure 2a). These clusters indicate that the major 

bottom types for Track 01 Out were flat sand with live cover and rippled sand (Figure 2a). 

Bottom classification results for Track 41 Out also resulted in two general clusters of data points. 

The first cluster of mostly blue data points had medium bottom hardness values (5.6 – 6.6) and 

low bottom roughness values (< 8.4) while the second cluster of light blue, red, and some green 

data points also had medium bottom hardness values but high bottom roughness values (> 8.4) 

(Figure 2b). These groupings of data points indicated that Tack 41 Out had bottom types of flat 

sand and rippled sand. All data points for Track 40 In were in the same cluster of red and green 

data points at medium bottom hardness values (5.6 – 6.6) and high bottom roughness values (> 

8.4), indicating that the entire track had a bottom type of rippled sand (Figure 2c). Finally, Track 

05 In also had one main clustering of red, green, light blue, and blue data points ranging from 
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medium to low bottom hardness values (5.5 – 6.3) and variable bottom roughness values (8 – 

8.7) (Figure 2d). The data of this track aligns closest to a bottom type with some live cover. 

Overall, Tracks 41 Out and 40 In were made up of sandy bottom types while both Track 01 Out 

and 05 Out showed bottom types with sparse live cover. 

Fish Parameters 

For all of the tracks, the Sv mean plots show that fish biomass was higher at night, with 

data values between -65 to -55, than during the day (-65 to -75), with the values decreasing at 

dawn and remaining lower throughout daylight hours (Figure 3). The data points for Track 01 

Out showed the greatest difference between the night and day values, as the fish biomass 

overnight was between data values of -60 to -50 while daytime values mostly fell between -75 to 

-65 (Figure 3a). In the plots for Track 40 In and 05 In, the fish biomass appeared to be increasing 

again near the end of the track (Figure 3c,d). These trends are not seen in Track 41 Out, likely 

due to the lack of daytime data (Figure 3b).  

The variable plots for proportion occupied displayed how much of the water column the 

fish were occupying over the course of the tracks. For this variable, Track 01 Out had the most 

variation in its data points. The track initially had high variability overnight, ranging from about 

0.87 to 1, then increased to show an overall high proportion occupied (~1) during the transition 

from night into day, before decreasing and remaining low throughout the day with data points 

falling between 0.75 to 0.85 (Figure 4a). All of the other plots for the remaining tracks showed 

consistently high proportion occupied values (~ 0.98 – 1) during the night (Figure 4b,c,d). 

Proportion occupied fell in the morning for Track 05 In from ~1 to ~0.96 and for Track 40 In 

from ~0.98 to between 0.95 – 0.8, and remained at those low values for the rest of the day 
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(Figure 4c,d). Again, the trends during the day are not seen in Track 41 Out (Figure 4b). In all of 

the other proportion occupied plots, the data points were higher at night than during the day. 

PCA Variable Correlations 

The relationships between the variables in each track were able to be assessed from the 

PCAs. In Track 01 Out, a strong, proportional relationship was seen between proportion 

occupied, equivalent area, and Sv mean and another grouping of aggregation index, bottom line 

depth mean, time, and height mean (Figure 5a). These two groupings of variables also loaded 

opposite of each other, meaning that the variables of one group had a strong, inversely 

proportional influence on the variables of the other group. Normalized bottom roughness and 

hardness variables for Track 01 Out both loaded strongly but at nearly a 90o angle from the two 

groups, indicating they have little to no influence on them as a result (Figure 5a). Track 41 Out 

had some similarities to Track 01 Out, which could be seen where aggregation index loaded 

proportionally with time and opposite of proportion occupied, as well as where both normalized 

bottom roughness and hardness loaded with minimal influence on those variables (Figure 5b). 

Differences could be seen where bottom line depth mean and height mean loaded opposite of 

aggregation index and time and where Sv mean loaded closest to bottom hardness normalized, 

indicating it did not have much influence on any of the other variables (Figure 5b). For Track 40 

In, variables that loaded together were normalized bottom hardness, average temperature, and 

proportion occupied, a group which appeared opposite of the time variable (Figure 5c). The 

variables bottom line depth mean and normalized bottom roughness both loaded strongly, but at 

roughly a right angle from the group, indicating minimal influence (Figure 5c). The variables in 

Track 05 In showed proportional influence between Sv mean and proportion occupied, as well as 
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aggregation index and bottom roughness normalized, though those two groupings of variables 

had little to no influence on each other (Figure 5d).  

CTD Data 

There were eight CTD profiler casts for Track 01 Out, twelve casts for Track 41 Out, 

nine casts for Track 40 In, and eight casts for Track 05 In. Temperatures in all tracks ranged 

from about 29.4oC to 27.4oC and tended to vary across the tracks in both depth and time. In 

Track 01 Out, the temperature contour plot revealed a clearly defined thermocline between the 

depths of about 3 to 5 meters throughout most of the track, with temperatures changing rapidly 

from ~27.6oC to ~28.8oC over that depth. (Figure 6a). Between the times of about 06:00 to 

12:00, the thermocline for this track fluctuated more between depths of ~3 to ~7 meters and was 

not as strong as it had been earlier in the track, but it was always present to some degree (Figure 

6a). The temperature contour plot for Track 41 Out showed the track to be well-mixed, with no 

clearly defined thermocline at any time or depth (Figure 6b). Instead, the track began with higher 

temperatures at night (~28.4oC), throughout all depths, then rapidly decreased from 28.45oC to 

28.1oC between about 12:00 to 15:00 and remained low for the rest of the track (Figure 6b). 

Track 40 In was also well-mixed at all depths until after 15:00, at which point there was some 

surface heating generating stratification at the end of the track where temperatures changed from 

28.4oC to 27.8oC over depths from about 3 to 7 meters (Figure 6c). However, it was not as 

stratified as Track 01 Out. Finally, the temperature contour plot for Track 05 In was most similar 

to the plot of Track 41 Out, in that temperatures were found to represent a well-mixed water 

column, where the values changed more with time rather than the depth of the water column. The 

plot for this track showed initially high temperatures (~29oC) at about 03:00, then a rapid 

decrease from 29oC to 28.85oC over the next 1.5 hours (Figure 6d). This was followed by a rapid 



17 

increase from 28.85oC back to 29oC for 2 hours, before finally slowly decreasing again over the 

final 12 hours of the track to a final temperature of 28.75oC (Figure 6d). Only Track 01 Out had 

a consistently and clearly defined thermocline across the entire track while the Tracks 41 Out, 40 

In, and 05 In showed more well-mixed water columns. 

Salinity values for all tracks ranged between about 35.8 psu to 36.5 psu. Across Track 01 

Out, the salinity contour plot revealed a well-defined pycnocline between depths of about 5 to 8 

meters, where the salinity values rapidly increase from ~35.8 psu near the surface to 36 psu at 

depths greater than 8 meters (Figure 7a). The salinity values for Track 41 Out also showed 

higher values of about 36.12 psu at greater depths, however, there was no single depth interval 

across the track where the values changed rapidly as they did for Track 01 Out and the overall 

range of salinities present was smaller (36.04 psu to 36.14 psu) (Figure 7b). Data for Track 40 In 

produced a contour plot that displayed very consistent levels of salinities across depths and time. 

For this track, there were only a few changes in salinities in the water column such as between 

03:00 to 06:00 and around 12:00 where values ranged from 36 psu to 36.05 psu (Figure 7c). The 

rest of the changes were isolated in the first 3 meters below the surface and did not show much 

range in the overall conditions (36 psu to 36.05 psu) (Figure 7c). Track 05 In had a salinity 

contour plot that revealed several fluctuations between ~36.10 psu to 36.16 psu within 0 to 3 

meters in depth before the changes spread out more at greater depths (Figure 7d). These changes 

however, did not occur at a consistent depth across time and so did not display a well-defined 

pycnocline, just as Track 41 Out and 40 In did not have one. Track 01 Out was the only one to 

have a well-defined pycnocline. 

Using the maximum N values from the buoyancy frequencies, it could be seen that 

Tracks 05 In, 41 Out, and 40 In all had relatively similar conditions of low stratification at nearly 
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all of their cast locations, which ranged from about 0.002 s-1 to 0.0048 s-1 (Figure 8). The only 

cast of those tracks to display more stratified conditions was the 8th cast of Track 40 In at a value 

of 0.0062 s-1, a rapid increase from the conditions recorded during the 6th and 7th casts for that 

track, ~0.002 s-1 and 0.0034 s-1, respectively (Figure 8). The track showing the most stratification 

was Track 01 Out, which had max N values between ~0.0054 s-1 and 0.0088 s-1 for all casts, 

where were greater than all of the max N values for all of the other tracks besides cast 8 in Track 

40 In (Figure 8). With these assessments of the buoyancy frequencies of each cast, Tracks 05 In, 

41 Out, and 40 In can be best described as representing water columns that are less stratified than 

that of Track 01 Out, which is consistent with what was observed in the contour plots. 

Statistical Analysis of Relationships 

As noted in the methods, each track was treated as a replicate when the variable 

relationships were evaluated, so n = 4. The resulting Pearson coefficient, T-Statistic, and P-Value 

for each of the variable relationships can be seen in Table 2. Aggregation index, an indication of 

the mean density of fish, was not found to be significantly correlated with either bottom 

roughness or bottom hardness, as the analysis of both relationships resulted in a P-Value greater 

than 0.05. The proportion of the water occupied by fish also did not show a significant 

relationship with bottom roughness and hardness variables (p > 0.05). Similarly, fish biomass in 

the water column, as represented by Sv mean, had no statistically significant correlation with the 

bottom type variables (p > 0.05). Both Sv mean and proportion occupied were each assessed for a 

significant relationship with time and neither relationship was found to be significant (p > 0.05), 

however, the P-Value for proportion occupied & time was less than that of Sv mean & time. 

Finally, Sv mean and proportion occupied were analyzed but were not found to have a significant 

relationship (p > 0.05) While of the P-Values calculated were found to be significant (p < 0.05), 
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it was noted that the relationships between the variables Sv mean & proportion occupied and 

proportion occupied & time produced the lowest P-Values (Table 2).  

Table 2: Statistical analysis of variable relationships using data from the entire track to produce a 

Pearson coefficient, T-Statistic, and P-Value. 

Variables 
Pearson 

coefficient, r 
n T-Statistic 

Degrees of 

Freedom 
P-Value 

Aggregation Index & 

Bottom Roughness 
-0.024 4 -0.042 3 0.969 

Aggregation Index & 

Bottom Hardness 
-0.006 4 -0.011 3 0.992 

Proportion Occupied & 

Bottom Roughness 
-0.067 4 -0.116 3 0.915 

Proportion Occupied & 

Bottom Hardness 
-0.142 4 -0.248 3 0.820 

Sv Mean & Bottom 

Roughness 
-0.098 4 -0.171 3 0.875 

Sv Mean & Bottom 

Hardness 
0.095 4 0.166 3 0.879 

Proportion Occupied & 

Time 
-0.463 4 -0.906 3 0.432 

Sv Mean & Time 0.060 4 0.105 3 0.923 

Sv Mean & Proportion 

Occupied 
0.624 4 1.383 3 0.261 

As explained earlier the assessment the relationship between the maximum N of the 

buoyancy frequencies and the fish variables at each CTD cast site used n = 37 because each cast 

site was treated as a replicate. From this analysis, no significant relationship was found between 

max N, the most strongly stratified point in the water column, and the fish biomass (p > 0.05). 

There was also no significant correlation between max N and the aggregation index (p > 0.05), 

however the P-Value for the variables max N and proportion occupied was 0.004, indicating the 

correlation between them is statistically significant (Table 3).  

Table 3: Statistical analysis results of the relationships between buoyancy frequencies and fish 

parameters. 

Variables 
Pearson 

coefficient, r 
n T-Statistic 

Degrees of 

Freedom 
P-Value 
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Max N & Sv Mean -0.009 37 -0.052 36 0.958 

Max N & Proportion 

Occupied 
-0.451 37 -3.032 36 0.004 

Max N & Aggregation 

Index 
-0.044 37 -0.263 36 0.794 

 

Discussion 

Bottom Types 

The data from this study showed that Tracks 01 Out, 41 Out, and 40 In were 

predominately made up of sand-based bottom types. The flat sand bottom of Track 01 Out was 

determined to have some live cover, but Track 05 In was the only one to have an entire bottom 

type of sparse live coral cover. For Tracks 01 Out and 41 Out, where two bottom types were 

present, the distribution of data points indicated that each type made up about equal portions of 

the tracks.  

The results seen here match those of previous studies at GRNMS, where the majority of 

the bottom habitats were represented by flat or rippled sand and the portion of habitats with some 

form of live cover make up about a quarter of the surveyed area (Campanella et al., 2019; 

Kendall et al., 2005). This indicates that even though the data used in this study did not cover the 

entire reef area, the study sites included are still representative of the features that make up the 

area as a whole. One bottom type that was not evident in the data was the vertical ledge features 

characterized by dense live cover. However, a previous study did note that these ledge habitats 

make up less than 1% of the reef area, so their presence in the data would be minimal in 

comparison to the amount of space taken up by the other identified reef types (Kendall et al., 

2005). With knowledge of the bottom types that were present and the locations of the ledge 
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habitats, it may be possible to predict the nature of the fish assemblages found across the reef. 

One such way to accomplish this would be to make spatial plots to compare to previous habitat 

classification maps to see if the nearby presence of a ledge correlates with higher fish activity or 

biomass. 

Past surveys across reefs found that the distribution of fish fauna over the reef was related 

to the bottom habitats present, with the highest fish biomass generally associated with the 

habitats of the highest relief, such as ledges (relief > 0.2 m) or fragmented hard bottom (relief > 

0.1 m) (Kracker, 2007; Switzer et al., 2020). When determining the distribution of fish biomass 

in the mid-water region, areas of reef bottoms with a mix of habitats, such as flat sand, rippled 

sand, and high to medium ledges, have been found to increase the amount of biomass in the mid-

water zone (Kracker et al., 2008). Predictions of fish biomass in the near-bottom zone were 

found to be significantly related to the distance from the nearest ledge (Kracker et al., 2008). 

Based on these conclusions, fish biomass would be expected to be higher in Tracks 01 Out and 

41 Out, both of which had two different bottom types. In the areas on these tracks, where one of 

the bottom types transition into the other, there would be a mixture of habitats, like those 

described in (Kracker et al., 2008). For Track 01 Out, the data did show that it had the highest 

fish biomass compared to the other tracks, but the same could not be determined for Track 41 

Out due to the lack of data. The other track that would be expected to have a higher fish biomass 

would be Track 05 In due its bottom type of sparse live coral cover. This bottom type would 

increase the bottom relief along the track. The fish biomass data points for that track do show 

higher values during the day than the other tracks, supporting that assessment. 

By understanding the bottom habitats present over the reef, not only can the fish biomass 

be predicted but so can other reef features such as the diversity of the fish fauna. Target strength, 
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the backscatter energy of a returned signal that is equivalent to the size of individual fish, was 

assessed over two different habitats at GRNMS (Kracker, 2007). Researchers there found that 

there was a greater range in the size of fish over a mixed habitat of high relief than there was for 

a habitat of flat sand and low relief (Kracker, 2007). With a greater range in sizes of individuals, 

the fish over the mixed habitat were determined to represent a greater diversity of species that 

were likely present due to the higher complexity of the reef, which contributes to an increase in 

the habitat variety and spatial heterogeneity. Although target strength was not included in the 

data for this study, the patterns that have been observed in the past over similar habitats should 

be considered to ensure a full understanding of the data and what it means for the reef system. 

For instance, by evaluating the complexity of each bottom type detected in each track of this 

data, the track expected to have the most species diversity might be determined. 

Fish Parameters 

Fish biomass, across all tracks, was consistently higher in the hours overnight than during 

the day. For Track 01 Out, the difference of the fish biomass values between night and day was 

greater than the difference seen in the other tracks. The proportion occupied data also followed a 

general trend across all of the tracks. In each one, a greater proportion of the water column was 

being occupied by fish at night than during the day. Track 05 In had the least amount of change 

in the proportion occupied from night into day, as the values remained very high throughout the 

entire track. The water column across Track 40 In was consistently occupied at high proportions 

overnight before showing a clear decrease into the day. The proportion occupied across Track 01 

Out showed the most variation as the track began with values that were high, but also more 

spread out. During the early morning hours however, the water column was almost entirely 

occupied before the proportion decreased to lower values during the day.  
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Typical distributions of fish across a reef over the course of 24 hours are usually expected 

to show higher activity during the day than at night, potentially with short periods showing the 

transition between diurnal and nocturnal organisms as they both change their behaviors in 

response to the time of day (Myers et al., 2016). The data show the opposite of this expected 

pattern as the fish biomass and proportion occupied values are highest at night and lower during 

the day. Factors that may explain the temporal patterns of fish activity include food availability, 

predation risk, and use of the reef structure by the local organisms (Khan et al., 2017; Myers et 

al., 2016). Feeding behaviors of different trophic levels can contribute to patterns of fish activity 

as a previous study found that benthic invertivores were typically more active during the day 

while planktivores were more abundant at night (Myers et al., 2016). Even the perceived risk of 

predation has been observed to alter the feeding habits of prey species (Catano et al., 2017). 

Herbivory by surgeonfishes (Acanthuridae) and parrotfishes (Scaridae) decreased when the 

distance between them and fiberglass models of grouper (Mycteroperca bonaci) and barracuda 

(Sphyraena barracuda) decreased, simulating increased predation risk on the foraging species 

(Catano et al., 2017). Knowledge from these studies and of the diets of local species at GRNMS 

would help to explain the temporal patterns of fish activity based on the interactions between the 

trophic levels.  

The other behavioral factor that influences reef fish activity is the use of shelter during 

certain times of the day. Large reef fish species, including the Spanish flag snapper (Lutjanus 

carponotatus) and the black sweetlips (Plectorhinchus gibbosus) have been found to consistently 

use reef structures for shelter during the day while traveling over 1 km at night, possibly to hunt 

for prey (Khan et al., 2017). While previously this strategy was attributed to UV avoidance, the 

long-term occupation of these shelters at all times in the diurnal period and in all types of 
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weather indicate that there is likely another reason for the use of the shelters (Khan et al., 2017). 

Regardless, this behavior of reef fish species might help to explain why the data seen in this 

study differs from those of previous research. How the local species at GRNMS use the reef 

structure, as well as patterns of that use, would need to be assessed in order to see if this type of 

behavior is a contributing factor to the temporal patterns of fish activity. 

Statistical Analysis of Relationships 

The statistical analysis performed on relationships between the fish variables, the bottom 

variables, and time, using all of the data collected across the tracks, did not find any significant 

relationships, indicating that none of the variables influenced any of the others. An analysis of 

the relationship between the stratification and variables relating to fish presence and location 

revealed that only the correlation between the stratification and proportion occupied showed any 

statistical significance (p < 0.01). This indicated that a stratified water column can reduce the 

proportion of the water column occupied by fish, but is less likely to affect the fish biomass or 

aggregation levels. 

Although there was only one relationship showing statistical significance in the data, not 

all of the stations were represented in the data used. With only four sites, each varying in time, 

space, and conditions of the water column, it is not entirely surprising that more significant 

relationships were not found. However, without these limitations, relationships between 

variables such as bottom types and fish biomass might have been observed. A previous study on 

coral reefs in Hawaii did find that the complexity of the reef structure, as well as the presence of 

bottom types such as sand and turf, had a significant influence on the fish biomass of the water 

column (Wedding et al., 2019). Another study went even further and used the species-habitat 

relationships identified at a temperate reef to develop models to show how different 
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environmental variables will effect species densities and assemblages (Young & Carr, 2015). 

The data in this study may have only revealed one significant relationship, but there have 

obviously been other instances where these correlations have been identified. The reason for this 

difference could be attributed to the low n value used in the analysis of the fish, bottom, and time 

variables. The study that developed the model for species-habitat relationships combined tracks 

of data collected over the course of two years for an n value of 265 while this study only had four 

tracks of data (Young & Carr, 2015). Another factor that may have contributed to the resulting 

low number of significant relationships might have been the conditions within the water column. 

The stratification of the environment varied between the tracks and it was only when the 

relationships of the maximum buoyancy frequencies and fish variables were assessed that any 

significance was seen between proportion occupied and max N.  

Stratification 

Based on the interpretations of the temperature and salinity plots, the tracks can be 

divided into categories of stratified and well-mixed tracks. First is Track 01 Out, the only track to 

show strong and consistent stratification. The contour plots for this track both showed a clearly 

defined thermocline and pycnocline throughout the entire track and at depths that were relatively 

consistent across time. In the other category of well-mixed tracks, Tracks 41 Out, 40 In, and 05 

In showed inconsistent changes between temperature values and salinity values across both 

depths and time. These assessments were backed up by the calculated maximum N values from 

the buoyancy frequency data, which showed that Track 01 Out was most strongly stratified 

throughout all of the CTD cast sites. From the UCTD casts, DO values were found to be 6 mg/L 

on 8/1/2018 and 8/2/2018. However, since these data were only collected on those two days, they 

did not reflect the conditions of the entire study area or timeframe. 
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Due to the location of the study site, it is not expected that the local fish fauna would be 

accustomed to large fluctuations in temperatures or salinities in short timescales like those that 

may be seen in habitats such as estuaries (Greenwood, 2007). Changes to oceanic stratification 

have been documented in the past with attention given to how the environment reacts to a storm 

that passed through the area. In one particular case, it was found that the mixing of the surface 

region increased due to waves generated by the storm and that resulted in a deepening of the 

thermocline as the base of the ocean surface boundary layer weakened (Lucas et al., 2019). It is 

likely that the well-mixed contour plots that were seen from data in this study were also the 

result of interference from a storm. Data collected at the study site showed that wind speeds were 

higher between 7/29/2018 to 8/4/2018, which was when Tracks 05 In, 41 Out, and 40 In were 

surveyed, than between 8/5/2018 to 8/8/2018, which was when Track 01 Out was surveyed 

(Figure 9a). In addition, data in Figure 9b shows that there was a low pressure system over the 

area at the same time as the high winds, indicating the presence of a storm, which would have led 

to water column mixing. These conditions contributed to the distinction between the well-mixed 

water columns and the stratified water column.  

When considering stratification in this data, the local fish species may have found it more 

difficult to occupy a greater portion of the water column during stratified conditions such as 

those in Track 01 Out. Although individual species were not identified and assessed in this data 

for specific behaviors, previous studies have noted changes in marine fishes when the conditions 

of the environment are no longer best suited to them. One such study found that fish assemblages 

in the southern California Current were primarily driven by the local environmental conditions, 

including the DO levels of the mid-water region and the sea surface temperatures (Koslow et al., 

2013). This is likely why the only significant correlation seen in this data was between the level 
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of stratification in the water column and the portion of water column that was being occupied by 

the fish. However, more data representing conditions in a stratified water column would be 

needed to truly understand the effects of these environmental factors at GRNMS. 

Fish Fauna Thermal Tolerances 

Looking back at the data presented here, the potential connection between the 

stratification of the water column and the proportion occupied by fish is most clearly seen in 

Track 01 Out. The temperature contour plot for Track 01 Out shows a well-defined thermocline 

for nearly the entire time, while the plot for the proportion occupied across Track 01 Out has the 

lowest proportion occupied values overall out of all of the tracks. In the other tracks, there was 

low stratification and their proportion of the water column being occupied was higher than that 

of Track 01 Out. The local fish fauna were likely responding to those changes and taking 

advantage of the opportunity to move more freely in the water column, which could be explained 

by the conditions of the environment becoming more suitable for them. 

As mentioned before, data on specific species were not gathered, however several of the 

most common local fish species include blue runner (Caranx crysos), red snapper (Lutjanus 

campechanus), and black sea bass (Centropristis striata) (Auster & Giacalone, n.d.; Campanella 

et al., 2019; Kracker, 2007). By knowing a few of these species, some predictions relating to 

their thermal tolerances and how those may drive the fish distribution can be made. Juvenile 

black sea bass for instance, have been found to have a 50% mortality rate when temperatures 

reach 33.3oC, with mortalities beginning at temperatures as low as 29.7oC (Atwood et al., 2001). 

While the data indicate that temperatures did not reach this threshold, the local populations may 

be unwilling or unable to move across temperature gradients of 1 to 2 decrees, like the one seen 

in Track 01 Out (Figure 6a). Instead, the species may prefer to move when the temperature 
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changes slowly with the diurnal cycle. A few temperature ranges that have been observed to 

encourage more activity for other local species include between ~25.5 – 30oC for the blue runner 

and ~22 – 28oC for the red snapper (Bolser et al., 2020). A closer examination of the fish species 

present, their individual thermal tolerances, and how those tolerances may change throughout 

their development would help further explain fish activity in the area in relation to the 

environmental conditions such as temperatures. 

Conclusions 

This study intended to characterize the bottom habitats that exist in a temperate reef, as 

well as record the conditions of the water column, in order to assess how those components of 

the reef may influence the biological factors such as fish distribution. A complete assessment of 

the structures of this reef led to the classifications of the bottom types based on bottom hardness 

and roughness, while the characteristics of the water column revealed that conditions of both a 

stratified and well-mixed environments were present. Despite these characterizations of the 

temperate reef, only the stratification of the water column was found to have a statistically 

significant relationship with one of the fish variables. As stratification increased so did the 

proportion of the water column that was occupied by fish, suggesting that the differences in 

stratification between the tracks may have been the primary driver of fish distribution. However, 

further analysis of data from GRNMS would be needed to identify if this correlation exists 

between other stratified tracks. In addition, an assessment of surveys with the same level of 

stratification may provide a way to observe other driving factors across the reef. 
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Figure 1: Map of Gray's Reef National Marine Sanctuary showing the acoustic transect lines, 

dive sites, boundary of the MPA, and perviously mapped bottom types (Campanella et al., 2019). 

Edited to highlight the tracks used in this study. 
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Figure 2: Bottom Classification graphs for (a) Track 01 Out, (b) Track 41 Out, (c) Track 40 In, 

and (d) Track 05 In, showing Normalized Bottom Roughness vs Normalized Bottom Hardness. 
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Figure 3: Sv Mean plots for (a) Track 01 Out, (b) Track 41 Out, (c) Track 40 In, and (d) Track 05 

In with time as GMT. 
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Figure 4: Proportion Occupied plots for (a) Track 01 Out, (b) Track 41 Out, (c) Track 40 In, and 

(d) Track 05 In with time as GMT. 
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Figure 5: PCA biplots for a) Track 01 Out, (b) Track 41 Out, (c) Track 40 In, and (d) Track 05 In 
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Figure 6: Temperature contour plots (oC) for (a) Track 01 Out, (b) Track 41 Out, (c) Track 40 In, 

and (d) Track 05 In. Warm colors represent higher temperatures and cool colors represent lower 

temperatures, however they are not set to standardize across the plots. Time in GMT. 
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Figure 7: Salinity contour plots (psu) for (a) Track 01 Out, (b) Track 41 Out, (c) Track 40 In, and 

(d) Track 05 In. Warm Warm colors represent higher temperatures and cool colors represent 

lower temperatures, however they are not set to standardize across the plots. Time in GMT.  
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Figure 8: Maximum buoyancy frequencies for each of the CTD casts of each track. 
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Figure 9: Local wind speeds (a) and atmospheric pressure (b) from NDBC's Station 41008 at 

Gray's Reef (National Data Buoy Center, 2021). 
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Appendices 

Appendix 1. Steps taken with the SONAR data in Echoview 

1. SONAR .raw files from each track were loaded into Echoview  

2. Background noise removal was applied to the 120 kHz echogram 

a. In Dataflow window, on the Shortcut menu select New  Variable 

b. In the New Variable dialog box: 

i. Operand 1 List: Sv raw pings T4 

ii. Click OK 

c. On Dataflow window, select Background noise removal 1 

i. One the Shortcut menu, select Echoview 

3. Line-pick algorithm to identify the start of the bottom 

a. In the View menu, select EV File Properties 

b. In the EV File Properties box, open the Single Beam tab on the Line and Surfaces 

page 

i. Start depth (m): 0.50  

ii. Stop depth (m): 30.00 

iii. Minimum SV for good pick (dB): -70.00 

iv. Select: Use Backstep 

v. Discrimination level (db): -60.00  

vi. Peak threshold (db): -55.00 

vii. Click OK 

4. On Background Noise Removal echogram window, select the New Editable Line from 

the Line draw tool arrow 

a. In the Create a new line box: Bottom Line 

b. Select: Pick from current variable 

c. Select: Span gaps 

d. Click OK 

5. Editing the Bottom Line 
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a. Open working echogram and select the Line and Surface tool  Choose defined 

bottom line 

b. Click from left to right on echogram window to make the correction 

c. On the Shortcut menu, select Update Active Line 

6. Automatic Bottom Classification function settings 

a. On the Dataflow window, select the Bottom Line variable 

i. In the Shortcut menu, select Graph 

1. Use displayed line graph of Bottom Line to estimate the average 

depth 

b. On the Bottom Noise Removal echogram, open Variable Properties through the 

Shortcut menu 

c. On the Analysis page of Variable Properties: 

i. Bottom Line: Select name of correct bottom line 

ii. Bottom echo threshold at 1 m (dB): -500 

iii. Depth normalization reference depth (m): Enter estimated average depth 

of the bottom line from the graph 

iv. Click OK 

d. On the Bottom Classification of the EV File Properties: 

i. Under Features to Extract: Select all features 

ii. Cluster Dimension Selection: Automatic (Principle component analysis) 

iii. Bottom Class Allocation: Automatic detection 

iv. Method: Calinski-Harabasz 

v. Clustering iterations: 100 

vi. Click OK 

e. Display the Background Noise Removal echogram 

f. On the Echogram menu, select Classify Bottom 

i. Variable name: enter name for bottom classification variable 

ii. Select Show bottom classes on integram 

iii. Click Classify 

g. To see the bottom classification results graphed based on bottom roughness 

normalized and bottom hardness normalized: 
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i. On the Dataflow window, select the Bottom Classification variable 

ii. In the Shortcut menu, select Graph to display Bottom Classification results 

as a scatterplot 

h. To export the bottom classification data: 

i. On the Dataflow window, select the Bottom Classification variable 

ii. In the Shortcut menu, select Export  Data Values 

iii. Under Select range to export: All measurements 

iv. Click Export 

v. Name the file and click Save 

7. Creating the surface line as a fixed-depth line 

a. Open working echogram and select Line and Surface tool  New Editable Line 

i. Under Destination, select Create new line 

ii. In the Create new line box, enter a name for the line 

iii. Fixed depth: 0.5 

iv. Click OK 

8. Defining Exclude above and below lines in preparation for integration 

a. On Echogram menu, select Variable Properties to open the dialogue box 

b. Open the Analysis page 

i. Select the correct line for the relevant box 

ii. Click Apply 

9. Excluding regions of bad data or surface activity interference 

a. From the echogram tool bar, select the option best suited for the region: 

i. Rectangle tool, Horizontal band tool, Vertical band tool, Parallelogram 

tool, Polygon tool 

b. Make a selection around the area of interest on the echogram 

c. Open the Shortcut menu and select Define Region 

d. In the Region Browser dialog box: 

i. Name: Type in appropriate name for region 

ii. Type: Select option from list that best suits the region 

10. Exporting Integration Results 

a. On Echoview menu, open the Variable Properties dialogue box to the Grid page 
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i. Show time/distance grid: Ping Number 

ii. Distance between grid lines (pings): 100 

iii. Show depth/range grid box: Water surface (depth of zero 

iv. Separation (m): 150 

v. Click OK 

b. Exporting integration by cells 

i. On Echoview menu, select Export  Analysis by Cells  Integration 

ii. In Export Integration by Cells (all) window: 

1. Save in: Select folder for exported file 

2. File name: Name for exported file 

3. Click Save 
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Appendix 2. Steps taken with the UCTD and CTD data files in Sea-Bird (SBE) Data 

Processing Software 

1. UCTD .asc files were converted to .cnv files in the SBE’s ASCII In program (14) 

a. Under the File Setup page: 

i. Select UCTD .asc files through the Input directory 

ii. Select the destination for the UCTD .cnv files in the Output directory 

iii. Optional: Fill in Name append and Output file boxes in the Output 

directory 

b. Under the Data Setup page: 

i. Scan interval variable: Time, seconds 

ii. Scan interval value: 0.0625 

iii. Select Column Names  Variable Name [unit]: Scan Count, Conductivity 

[S/m], Temperature [ITS-90, deg C], Pressure [db] 

c. Click Start Process 

2. Converted UCTD .cnv files were processed by the SBE’s Align CTD program (3)  

a. Under File Setup page:  

i. Follow same instructions as Step 1, using UCTD .cnv files 

b. Under Data Setup page  Enter Advanced Values: 

i. Conductivity [S/m]: 0 

ii. Temperature [ITS-90, deg C]: 0.10 s 

iii. Click OK 

c. Click Start Process 

3. Aligned UCTD .cnv files were run through SBE’s Section program (16) 

a. Under File Setup page: 

i. Follow same instructions as Step 1, using UCTD .cnv files 

b. Under Data Setup page: 

i. Section based on: Pressure 

ii. Pressure section cast: Downcast 

iii. Minimum value: 0.5 

iv. Maximum value: 30 
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c. Click Start Process 

4. UCTD .cnv files were converted again in SBE’s ASCII Out program (15) 

a. Under File Setup page:  

i. Select UCTD .cnv files through the Input directory 

ii. Select the destination for the UCTD .asc and .hdr files in the Output 

directory 

iii. Optional: Fill in Name append and Output file boxes in the Output 

directory 

b. Under Data Setup page: 

i. Select: Output header file and Output data file 

ii. Lines per page: 60 

iii. Label columns: No column labels 

iv. Column separator: Space 

v. Julian days conversion format: Julian days 

vi. Select Output Variables: Scan Count, Conductivity [S/m], Temperature 

[ITS-90, deg C], Pressure [db], Flag 

c. Click Start Process 

5. Converting the CTD files began with using SBE’s SBE 911plus/917plus CTD program 

(13) (found under the Configure menu) 

a. Select Open 

i. Choose .xmlcon files to load into the program 

b. Sensor list should include: conductivity, temperature, pressure, altimeter, 

fluorometer, turbidity, oxygen, and more 

c. Click Save 

6. CTD .hex files were converted to .cnv files using SBE’s Data Conversion program (1)  

a. Under File Setup:  

i. Instrument Configuration file should match the file being processed 

ii. Select CTD .hex files through the Input directory 

iii. Select the destination for the CTD .cnv files in the Output directory 

iv. Optional: Fill in Name append and Output file boxes in the Output 

directory 



49 

b. Under Data Setup page:  

i. Output format: ASCII output  

ii. Convert data from: Downcast 

c. Under Data Setup, Select Output Variables  Variable Name [unit]: 

i. Depth [salt water, m] 

ii. Pressure, Digiquartz [db] 

iii. Temperature [ITS-90, deg C] 

iv. Time, Elapsed [seconds] 

v. Conductivity [uS/cm] 

vi. Density [density, kg/m^3] 

vii. Latitude [deg] 

viii. Longitude [deg] 

ix. Fluorescence, Seapoint 

x. Oxygen, SBE 43 [mg/l] 

xi. Oxygen, SBE 43 [% saturation] 

xii. Potential Temperature [ITS-90, deg C] 

xiii. Salinity, Practical [PSU] 

xiv. Seafloor depth [salt water, m] 

xv. Turbidity, Seapoint [FTU] 

d. Click Start Process 

7. CTD .cnv files were converted to .asc and .hdr files using SBE’s ASCII Out program (15)  

a. Under File Setup page:  

i. Select CTD .cnv files through the Input directory 

ii. Select the destination for the CTD .asc and .hdr files in the Output 

directory 

iii. Optional: Fill in Name append and Output file boxes in the Output 

directory 

b. Under Data Setup page 

i. Label columns: Top of the page 

ii. Column Separator: Comma 
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iii. Select Output Variables: All the same ones as Data Conversion (Step 6c) 

plus Flag 

c. Click Start Process 
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