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Abstract 

 The decomposition of leaf litter in aquatic ecosystems is carried out mostly by 

microorganisms, including bacteria and fungi. Fungi, known as aquatic hyphomycetes, dominate 

microbial communities in the decomposition of leaf litter. These fungi produce extracellular 

enzymes that aid in the sequestration of carbon and nutrients and lead to the breakdown of 

complex plant polymers. We evaluated the effects of temperature on extracellular enzyme 

activity within the framework of the Metabolic Theory of Ecology (MTE). The activity of β-1,4-

glucosidase and β-1,4-xylosidase was estimated fluorometrically using artificial substrate 

analogs. Phenol oxidase activity was estimated spectrophotometrically from oxidation of L-

DOPA (L-3,4-dihydroxyphenylalanine). We found greater temperature sensitivity of oxidative 

enzymes (phenol oxidase) involved in degradation of recalcitrant substrates compared to 

hydrolytic enzymes (β-glucosidase and β-xylosidase). In addition, we found that the activity of 

microbial enzymes involved in carbon sequestration does not follow simple monotonous 

response across experimental temperatures (4-20°C) predicted by the MTE. Instead, we observed 

greater temperature sensitivity (higher apparent activation energy) of hydrolytic enzymes at 

colder temperatures. These findings may have important implications for stream ecosystems 

under climate change scenarios since both peak leaf litter availability and microbial activity 

occur during the coldest seasons in autumn-winter. 
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Introduction 

The functioning of forested headwater stream ecosystems is affected by a multitude of 

factors including temperature, biodiversity, community structure, and nutrient abundance 

(Ferreira et al. 2012). In particular, temperature affects the activity of microorganisms in these 

ecosystems, where they form the foundation of trophic webs, drive global carbon (C) and 

nutrient cycles, and affect composition of the atmosphere (Sinsabaugh and Follstad Shah 2012). 

Headwater forest streams are capable of significant terrestrial C sequestration, processing, and 

transport, which demonstrates their important role in the global C cycle (Fisher and Likens 1973; 

Cole et al. 2007). The catabolism of organic matter in aquatic ecosystems by means of 

extracellular enzymes is considered a rate controlling step in the global C cycle (Cole et al. 2007; 

Sinsabaugh and Follstad Shah 2012). For this reason, several studies have focused on the effects 

of potential changes in climate on aquatic ecosystems (Davidson and Jannsens 2006; Ferreira 

and Chauvet 2011; Sinsabaugh and Follstad Shah 2012). Predictions by climate researchers 

suggest a 1-4°C increase in global average surface temperature by the end of the century (IPCC 

2014). This may have important implications for stream ecosystem processes under climate 

change since increases in the rate of microbially mediated litter decomposition might lead to 

food shortage for higher trophic levels in aquatic ecosystems (Ferreira and Chauvet 2011, 

Ferreira et al. 2012). 

The photosynthesis and, hence, primary production in headwater forest streams are 

limited by light availability due to shading. The organisms found in these systems are mainly 

heterotrophic, meaning that they rely on organic sources of carbon (Brown et al. 2004; Gessner 

et al. 2007). As a result of natural senescence and abscission, forest streams receive large 

allochthonous inputs of organic matter from the riparian zone, which include leaves and twigs of 
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riparian trees and shrubs (Fisher and Likens 1973, Gulis 2001). These inputs fuel microbial 

metabolism of litter-associated decomposers taking place in stream ecosystems. Thus, litter-

associated microorganisms are responsible for the mediation of energy and nutrient transfer to 

higher trophic levels in these ecosystems (Gessner et al. 2007). 

Decomposition of organic matter in freshwater streams is carried out mainly by fungi and 

bacteria (Gulis et al. 2019). Increasing evidence suggests fungi, known as aquatic hyphomycetes, 

dominate microbial communities in decomposing plant litter under aerobic conditions (Gulis and 

Suberkropp 2003; Gessner et al. 2007; Gulis and Bärlocher 2017; Gulis et al. 2019). The 

decomposition of this organic matter is at the base of aquatic food webs, where it fuels aerobic 

metabolism, while litter C is incorporated into fungal biomass and lost as CO2 via microbial 

respiration (Gessner et al. 2003; Ferreira et al. 2012). The process of fungal decomposition 

enhances litter palatability for aquatic invertebrate shredders generating fine particulate organic 

matter (FPOM) to be used downstream by filter-feeders and collectors (Ferreira et al. 2012; Gulis 

and Bärlocher 2017). Aquatic hyphomycetes are therefore important intermediates between 

decomposing organic matter, secondary production (accumulation of microbial biomass), and 

higher trophic levels in forest stream ecosystems. 

In an effort to quantitatively describe how ecological processes may respond to changes 

in temperature, James H. Brown formulated the Metabolic Theory of Ecology (MTE) (Brown et 

al. 2004). MTE is a quantitative theory predicting how metabolic rates will vary with body size 

and temperature within normal biological temperature range (0-40°C) (Brown et al. 2004). 

Brown establishes that metabolism is an exclusively biological process, which must abide by the 

laws of mass, energy and thermodynamics (Brown et al. 2004). Brown reasons that metabolic 

rate is the fundamental biological rate, as it describes the rates of energy uptake, transformation, 
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and allocation across living organisms (Brown et al. 2004). In general, metabolic reactions of 

litter-associated decomposers involve acquisition and incorporation of C and other nutrients (e.g. 

N and P) into microbial biomass (secondary production) and release of CO2 as a result of aerobic 

respiration (Gulis and Bärlocher 2017).  

According to the MTE, rates of individual biochemical reactions, metabolic rates, and 

nearly all other rates of biological activity scale exponentially with temperature (Brown et al. 

2004). In litter-associated aquatic microorganisms, the metabolic rate is related to the rate of 

respiration, since they obtain energy through oxidation of organic compounds. This relationship 

can be described in conjunction with the Van’t Hoff-Arrhenius expression: 

ܴ	~	݁ିா/் 

where R is respiration, E is activation energy, k is the Boltzmann constant, and T is temperature 

(Arrhenius 1889; Brown et al. 2004; Sierra 2012). Although temperature sensitivity may vary by 

metabolic process, the temperature dependence of the respiratory complex has been represented 

by an apparent activation energy (Ea) of ~0.65 eV based on multiple experimental estimates 

(Gillooly et al. 2001; Yvon-Durocher et al. 2012). The apparent activation energy of a metabolic 

process, which is determined by the structure and function of involved enzymes, can also be used 

to characterize kinetics of microbial enzymes involved in C sequestration (Sierra 2012; 

Sinsabaugh and Follstad Shah 2012). However, experiments are needed to better understand how 

the extracellular enzymatic activity of aquatic litter-associated microorganisms is affected by 

changes in temperature and if the responses follow simple MTE prediction of monotonous 

(exponential) increase across wide temperature intervals. 

 Communities of aquatic hyphomycetes in streams are well equipped with 

lignocellulolytic enzymes used to break down major plant polymers found in detritus (Gulis et al. 
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2019). The degradation of plant polymers by fungi may also make simpler carbohydrates 

available for bacteria with enzymatic deficiencies (Gulis and Suberkropp 2003; Romani et al. 

2006). Aquatic hyphomycetes secrete enzymes that break down hemicellulose, cellulose, and 

lignin-like or phenolic plant polymers (Hendel and Marxsen 2005; Hendel et al. 2005). However, 

the activity of ligninolytic enzymes used in the degradation of lignin can be limited but does 

occur in some species and not others (Gulis et al. 2019). Decomposition of plant polymers driven 

by microbial extracellular enzymes is important in contributing to the flow of C towards fungal 

respiration and secondary production, and eventually to stream detrital food webs (Gulis and 

Bärlocher 2017).  

β-1,4-xylosidase catalyzes the hydrolysis of β-1,4-linkages found in hemicellulose 

xylooligosaccharides, a ubiquitous component of plant cell walls (Sinsabaugh and Follstad Shah 

2012). β-1,4-glucosidase catalyzes the terminal reactions in the hydrolysis of cellulose β-1,4-

linkages found in the cell wall and fibers of decomposing plant litter (Hendel and Marxsen 2005; 

Sinsabaugh and Follstad Shah 2012). Fluorogenic substrate analogs can be used for precise 

quantification of β-1,4-xylosidase and β-1,4-glucosidase activity (Hoppe 1983) in decomposing 

leaf litter samples. These methods, having been used in practice for decades, have shown to be 

reliable in determining the activity of hydrolytic enzymes present in biological samples (Hoppe 

1983; Hendel and Marxsen 2005; Sinsabaugh and Follstad Shah 2012). 

One of the most abundant compounds found in nature, lignin, is a principal constituent of 

vascular plants (Hendel et al. 2005). Due to its association with cellulose fibers in plants, lignin 

is significant in contributing to the flow of C in detrital food webs of aquatic ecosystems 

(Davidson and Jannsens 2006; Gessner et al. 2007). Degradation of lignin is an oxidative process 

carried out by fungi and bacteria equipped with ligninolytic enzymes that include phenol oxidase 
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(a monooxygenase) and peroxidase (Hendel et al. 2005). Assays of oxidative enzyme activity 

most commonly involve L-3,4- dihydroxyphenylalanine (L-DOPA) as the electron-donating 

substrate for the detection of phenol oxidase activity. Due to its water solubility and electron 

donating ability, L-DOPA is the preferred substrate to be used with environmental samples in 

spectrophotometric determination of phenol oxidase activity (Hendel et al. 2005). DOPA 

oxidation results in a red tint which is quantified by measuring absorbance at a wavelength of 

460 nm (Hendel et al. 2005). L-DOPA can also be administered with a small concentration of 

H2O2 for the determination of peroxidase activity (Hendel et al. 2005). 

In an effort to explore the temperature response of enzymatic activity in litter-associated 

aquatic decomposers, an experiment in laboratory microcosms simulating stream conditions was 

carried out. It was hypothesized that (1) there are differences in temperature sensitivity of 

microbial hydrolytic and oxidative enzymes, (2) the responses of microbial enzymes to 

temperature follow predictions of the MTE, and (3) temperature sensitivity of microbial enzymes 

is consistent across temperatures commonly found in streams (0-20°C). 

 

Materials and Methods 

Laboratory Microcosms 

 Experiments were conducted in laboratory microcosms to simulate stream conditions of 

aquatic litter-associated fungi. Microcosm leaf disks were pre-colonized by natural microbial 

assemblages in a headwater stream draining watershed 5a at the Coweeta Hydrologic Laboratory 

in Macon County, North Carolina. Pre-colonization took place in November 2017 during peak 

autumn abscission. Pre-weighed, dried Liriodendron tulipifera leaf disks were placed in litter 

bags in groups of 45, sterilized by autoclaving (dry, 15 minutes) and submerged in the stream for 
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four days. After colonization by stream microorganisms, leaf disks were placed into laboratory 

microcosms. Microcosms were 250-mL tissue culture flasks with membrane-filter caps filled 

with 100 mL of sterile nutrient solution (Figure 1). Nutrient solution was composed of 0.25 g L-1 

of 3-(N-morpholino)-propanesulfonic acid (MOPS) (pH adjusted to 6.5), as well as inorganic 

nitrogen and phosphorus added as sterile stocks of NaNO3 and KH2PO4 at final concentrations of 

2.0 mg L-1 (NO3-N) and 0.275 mg L-1 (PO4-P) for a molar ratio of 16:1 (N:P). Nutrient solutions 

were replaced every two days via aseptic evacuation and refilled with fresh sterile nutrient 

solution to ensure that nutrient availability did not limit microbial activity. Microcosms were 

incubated on shakers at 5 different temperatures (4, 8, 12, 16, and 20°C) in environmental 

chambers for 28 days. 

Sample Collection 

 Microcosm flasks were harvested on days 0, 6, 12, 18, 24, and 28 after the start of 

laboratory incubations, and sets of 5-15 leaf disks were distributed into containers for the 

measurement of dry leaf mass (DM), fungal biomass, microbial enzymatic activity and other 

microbial parameters that were measured by collaborating students (Pates 2019). A set of 5 leaf 

disks for enzymatic assays were immediately frozen at -20°C until analyses. 

Enzymatic Assays 

In this study, enzymatic assays were conducted to estimate activity of extracellular 

enzymes that aid in microbial decomposition of leaf material and carbon sequestration. The 

activity of extracellular enzymes β-xylosidase and β-glucosidase was estimated fluorometrically 

using artificial fluorogenic substrates that release 4-methylumbelliferone (MUF) upon attack by 

corresponding hydrolytic enzymes (Hendel and Marxsen 2005; Romani et al. 2006; Chen et al. 

2011). Substrate analogs 4-methylumbelliferyl-β-D-glucopyranoside (MUF-GL, substrate for β-
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glucosidase, E.C. 3.2.1.21) and 4-methylumbelliferyl-β-D-xylopyranoside (MUF-X, substrate for 

β-xylosidase, E.C. 3.2.1.37) were used to estimate enzymatic activity. Also, phenol oxidase 

activity was estimated spectrophotometrically using electron-donating substrate analog L-3,4-

dihydroxyphenylalanine (L-DOPA) (Hendel et al. 2005; Chen et al. 2011). 

Fluorometric Assays 

For each replicate (four) of each temperature treatment (4, 8, 12, 16, 20°C) on each 

harvesting day (d. 0, 6, 12, 18, 24, 28), five leaf disks were placed into sterile 2 mL screw-cap 

tube containing four 3.2-mm diameter stainless steel beads. Then, 1.3 mL of sterile 5.0 mM 3-

(N-morpholino)-propanesulfonic acid (MOPS) buffer (pH 6.5) was pipetted into each tube. 

Tubes were homogenized at 3500 rpm in a bead-beating homogenizer for three minutes. Cut 

pipette tips were then used to transfer 0.1 mL aliquots of plant tissue homogenate from each 

sample into three amber microcentrifuge tubes to determine activity of glucosidase, xylosidase as 

well as quenching for each sample due to color present in leaf homogenates. Each of three tubes 

received 1.0 mL of corresponding sterile substrate analog stock solution (MUF-GL and MUF-X 

at 0.55 mM stock concentration) or quench solution (Q, prepared to a stock concentration of 0.5 

mM MUF). Two additional tubes received sterile 5.0 mM MOPS buffer instead of plant tissue 

homogenate to serve as controls for fluorescence due to abiotic degradation of substrates and 

impurities. These additional tubes each received either 1.0 mL of MUF-GL or MUF-X substrate. 

Enzymatic reactions were timed at the moment of dispensing fluorogenic substrates into 

microcentrifuge tubes. Samples were incubated at corresponding temperatures (4-20°C) in 

environmental chambers on orbital shakers at 80 rpm. Following incubation, 0.1 mL of 0.2 M 

Na2CO3 stop buffer was dispensed into each reaction tube including controls for a total reaction 

time of 1 hour. Addition of carbonate stop buffer stopped enzymatic reactions by raising pH to 
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~10.5 which is also ideal for fluorescence of MUF. Tubes were then centrifuged for one minute 

at 16,000·g. Serial dilutions ranging from 10-1 to 10-2 as needed to measure fluorescence were 

then prepared using combined buffer solution (carbonate buffer: MOPS buffer, 1:10 ratio). 

Fluorescence was recorded using a Promega QuantiFluor Portable Fluorometer with a modified 

cuvette insert for 0.5 mL PCR tubes. 

A set of 6 working standards were prepared daily by diluting 0.2 mM MUF stock with 

MOPS buffer to generate a standard curve with MUF concentrations of 0.4, 1, 2, 5, 10, 20 µM. 

Standards were treated consistently with homogenized samples by adding 0.1 mL of carbonate 

stop buffer, elevating pH to ~10.5 to achieve ideal MUF fluorescence. Final standard 

concentrations considered addition of carbonate stop buffer when calculating the standard curve. 

All buffers and solutions were stored in a refrigerator at 4°C while being protected from 

exposure to light. 

Spectrophotometric Assays 

 After sample homogenization as described above for fluorometric assays, cut pipette tips 

were then used to transfer 0.1 mL aliquots of plant tissue homogenate from each sample into four 

microcentrifuge tubes to estimate phenol oxidase (Ph) and peroxidase (P) activity as well as to 

adjust  absorbance in each assay for the presence of yellowish coloration from leaf homogenate 

(Ph-C and P-C samples). Two additional tubes received 0.1 mL of MOPS buffer instead of 

homogenate to serve as controls for absorbance due to abiotic degradation or contamination of L-

DOPA (Hendel et al. 2005). 

Enzymatic reactions were started by the addition of 1.0 mL of sterile 3.25 mM L-DOPA 

in MOPS solution to Ph and P samples. At the same time, 1.0 mL of sterile 5.0 mM MOPS buffer 

was added to Ph-C and P-C samples. Peroxidase reactions also received 65 µL of 3% H2O2 
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solution. Control tubes also received 1.0 mL of L-DOPA in MOPS solution and were treated 

consistently with processed samples. All tubes were incubated for 4-24 hours at corresponding 

temperatures (4-20°C) in environmental chambers on orbital shakers at 80 rpm. Tubes were 

centrifuged for one minute at 16,000·g. Absorbance was immediately recorded at 460nm with a 

Beckman DU520 UV/VIS spectrophotometer by transferring 1.0 mL of supernatant to 1.0 cm 

cuvettes. In general, no peroxidase activity was detected in most samples (i.e. comparable 

absorbance for phenol oxidase and peroxidase assays), thus, only phenol oxidase activity was 

considered for data analysis in this study. 

Statistical Analyses 

 Enzymatic activities expressed per gram of litter dry mass and per gram of fungal 

biomass were used for statistical analyses. Data for litter dry mass and litter-associated fungal 

biomass was provided by graduate student Hunter Pates who worked on a closely associated 

project (Pates 2019). For analysis of variance (ANOVA), enzymatic activity data was ln-

transformed to achieve normality. Main effects ANOVA with time and temperature as categorical 

variables was performed to determine if responses of enzymatic activity to changes in 

temperature were significant. Also, linear regressions of log-transformed data on enzymatic 

activity against inverse temperature parameter (1/kT) from the MTE were used to estimate 

apparent activation energy for each type of enzymatic activity across different temperature 

intervals. Statistical analyses were performed with SPSS 26.0. 

 

Results 

 In general, enzymatic activity increased with increases in temperature. β-xylosidase 

activity per unit of litter dry mass increased throughout the duration of the experiment (d. 0-28) 
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(Figure 2A). ANOVA confirmed the effect of temperature on β-xylosidase activity per unit of 

litter dry mass to be statistically significant (F4, 103 = 139.64, p < 0.0001) (Figure 2A). The effect 

of temperature on β-xylosidase activity per unit of litter-associated fungal biomass was also 

statistically significant (main effects ANOVA, F4, 103 = 39.89, p < 0.0001) (Figure 2B). On day 0, 

temperature sensitivity of β-xylosidase activity per unit of litter-associated fungal biomass was 

comparable to that of respiration (Ea of respiration ~0.65 eV as predicted by the MTE). A linear 

regression of day 0 β-xylosidase activity for 4-16°C interval showed an activation energy (Ea) of 

0.72 eV (p = 0.0039) (Figure 3) with no further increases in activity above 16°C. On day 12, β-

xylosidase activity per unit of litter-associated fungal biomass showed somewhat lower 

temperature sensitivity with estimate of Ea for 4-12°C interval of 0.48 eV (p = 0.0029) (Figure 

3). A linear regression for 12-20°C interval showed an Ea of 0.26 (p = 0.042) suggesting lower 

temperature sensitivity of β-xylosidase at higher temperatures (Figure 3). 

β-glucosidase activity per unit of litter dry mass generally increased throughout the 

duration of the experiment (d. 0-28) (Figure 4A). β-glucosidase activity in this case also 

generally increased with increases in temperature. ANOVA showed that the effect of temperature 

on β-glucosidase activity per unit of litter dry mass was significant (F4, 104 = 52.0, p < 0.0001) 

(Figure 4A). The effect of temperature on β-glucosidase activity per unit of litter-associated 

fungal biomass was also statistically significant (main effects ANOVA, F4, 104 = 12.64, p < 

0.0001) (Figure 4B). On days 0 and 12, β-glucosidase activity per unit of litter-associated fungal 

biomass appeared to show higher temperature sensitivity at lower temperatures (Figure 5). 

Although not significant, a linear regression of day 0 data for 4-20°C interval showed an Ea of 

0.30 eV (p = 0.0745) (Figure 5). A linear regression of day 12 β-glucosidase activity for 4-12°C 
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interval gave an Ea of 0.37 eV (p = 0.0594) with no further increases in activity above 12°C 

(Figure 5). 

Data for phenol oxidase activity was generally below detection limit across treatment 

temperatures (4-20°C) on days 0 and 6. In general, phenol oxidase activity increased from days 

12 to 28 during the experiment (Figure 6). Phenol oxidase activity per unit of litter dry mass 

generally increased with increases in temperature (Figure 6A). ANOVA showed the effect of 

temperature on phenol oxidase activity per unit of litter dry mass was statistically significant (F4, 

69 = 142.3, p < 0.0001) (Figure 6A). The effect of temperature on phenol oxidase activity per unit 

of litter-associated fungal biomass was also significant (main effects ANOVA, F4, 69 = 116.54, p < 

0.0001) (Figure 6B). On day 12, phenol oxidase activity per unit of litter-associated fungal 

biomass showed higher temperature sensitivity than that of respiration according to the MTE 

predictions (Figure 7). A linear regression of day 12 phenol oxidase activity for 4-20°C interval 

gave an Ea of 0.92 eV (p < 0.0001) (Figure 7). On day 28, phenol oxidase activity per unit of 

litter-associated fungal biomass also showed very high temperature sensitivity with an Ea 

estimate of 1.25 eV (p < 0.0001) for 4-20°C interval (Figure 7). 

 

Discussion 

 Overall, the results of this experiment suggest that the responses of microbial 

extracellular enzymatic activity associated with submerged plant litter to changes in temperature 

are likely more complex than predicted by the Metabolic Theory of Ecology. With the possible 

exception of phenol oxidase, enzymatic activity did not follow simple monotonous exponential 

response predicted by the MTE in the 4-20 °C interval that was examined. Instead, for β-

xylosidase and β-glucosidase, greater temperature sensitivity of enzymatic activity was observed 
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at lower temperatures. Linear regressions of day 12 β-xylosidase activity per unit of fungal 

biomass for 4-12°C and 12-20°C intervals showed estimates for Ea of 0.48 eV and 0.26 eV 

respectively, while no further increases in β-xylosidase activity was observed at temperatures 

above 12°C (Figures 3 and 5).  Estmates of Ea for β-xylosidase and β-glucosidase activity varied 

depending on decomposition stage and temperature interval (0.26-0.72 eV, Figures 3 and 5) and 

were generally lower or comparable to Ea of repiration (0.65 eV) as predicted by the MTE 

(Brown et al. 2004). In contrast, estimates of Ea for phenol oxidase activity (0.92-1.25 eV, Figure 

7) were considerably higher than that of respiration. These findings indicate that temperature 

responses of litter-associated extracellular enzymes cannot be easily predicted by the MTE, since 

temperature sensitivity depended on examined temperature interval (i.e. monotonous exponential 

response was not detected in all cases). In addition, the temperature sensitivity of respiration may 

not be a reliable predictor of temperature responses of extracellular enzymatic activity of aquatic 

litter-associated microorganisms, since we observed clear differences in temperature sensitivity 

(Ea) between hydrolytic and oxidative enzymes involved in plant litter decomposition and C 

sequestration. 

As expected, the results of this experiment demonstrated that that enzymatic activity 

generally increased in response to increases in temperature. This agrees with findings from 

previous publications as the rates of enzymatic reactions are known to increase with temperature 

(Hendel and Marxsen 2005; Sinsabaugh and Follstad Shah 2012; Fenoy et al. 2016). A closer 

look at the responses to changes in temperature for each kind of activity measured in this 

experiment (β-xylosidase, β-glucosidase, and phenol oxidase) revealed some peculiarities. For 

example, activity of β-xylosidase and β-glucosidase per unit of fungal biomass decreased from 

day 0 to day 6 of the experiment (Figures 2B and 4B). The decrease in activity per unit of fungal 
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biomass was observed due to a very large increase in fungal biomass (Pates 2019) coupled with 

smaller increases in enzymatic activity across temperature treatments. This is what would be 

expected, since fungal biomass was very low and resource (C, N, P) availability was high at the 

very beginning of the experiment (Sinsabaugh and Follstad Shah 2012). 

Phenol oxidase activity was very low (below detection limit) across treatment 

temperatures (4-20°C) in the beginning of the experiment on days 0 and 6 (Figure 6). This can be 

explained by the fact that the production and release of ligninolytic enzymes involved in the 

degradation of recalcitrant substrates requires substantial resource investment from fungi; thus, 

early in decomposition, microorganisms will be relying mostly on more easily digestible plant 

polymers that can be mined with hydrolytic enzymes (e.g. β-xylosidase and β-glucosidase in this 

experiment). At later stages of decomposition when less recalcitrant plant polymers become 

exhausted and fungal biomass accumulates to high levels, microbial investment in ligninolytic 

enzymatic machinery will occur (Sinsabaugh et al. 2014; Fenoy et al. 2016; Gulis et al. 2019).  

The temperature sensitivity of phenol oxidase activity per unit of fungal biomass was 

higher than what was observed for β-xylosidase and β-glucosidase activity in this experiment. 

This finding is supported by previously mentioned higher estimates of apparent activation energy 

(Ea) of phenol oxidase (0.92-1.26 eV) than those of β-xylosidase and β-glucosidase (0.26-0.72 

eV). Thus, in this experiment, temperature sensitivity was found to be consistently higher for 

oxidative ligninolytic enzymes than hydrolitic enzymes involved in degradation of hemicellulose 

and cellulose. The higher temperature sensitivity of these enzymes involved in the degradation of 

recalcitrant substrates has been reported in previous works. In terms of temperature sensitivity of 

decomposition and respiration rates, it has been reported that recalcitrant substrates are more 

sensitive to changes in temperature than labile substrates processed mostly by hydrolytic 
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enzymes (Craine et al. 2010; Sierra 2012; Wang et al. 2012). Thus, the findings from this 

experiment generally agree with previously published data. 

 

Conclusions 

In this study, it was hypothesized that (1) there are differences in temperature sensitivity 

of microbial hydrolytic and oxidative enzymes, (2) the responses of microbial enzymes to 

temperature follow predictions of the MTE, and (3) temperature sensitivity of microbial enzymes 

is consistent across temperatures commonly found in streams (0-20°C). First, it was observed 

that enzymatic activity was temperature dependent and generally increased with temperature; 

however, the temperature sensitivity of oxidative enzymes (phenol oxidase) involved in 

degradation of recalcitrant substrates was much greater than that of hydrolytic enzymes (β-

xylosidase and β-glucosidase), thus, supporting our first hypothesis. In addition, we found that 

the activity of microbial enzymes involved in carbon sequestration did not follow simple 

monotonous response across experimental temperatures (4-20°C) predicted by the MTE. Instead, 

we observed greater temperature sensitivity (higher apparent activation energy) of hydrolytic 

enzymes at colder temperatures. Thus, our second and third hypotheses were rejected. These 

findings may have important implications for stream ecosystems under climate change scenarios, 

since peaks in leaf litter availability and microbial activity both occur during the coldest season 

in autumn and winter months. 
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Figure 1. Laboratory microcosms (tissue culture flasks) containing naturally colonized tulip 

poplar leaf disks with nutrient solution that were incubated at 5 temperature treatments (4-20°C) 

for 28 days. 
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Figure 2.  A. Dynamics of β-xylosidase activity per unit of litter dry mass over the course of the 

experiment (days 0-28) for each temperature treatment (4-20°C).  B. β-xylosidase activity per 

unit of litter-associated fungal biomass over the course of the experiment (days 0-28) for each 

treatment temperature (4-20°C). Error bars represent standard errors (SE) of means. 
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Figure 3. Temperature sensitivity of β-xylosidase activity per unit of litter-associated fungal 

biomass shown for days 0 and 12 of the experiment. Error bars represent standard errors (SE) of 

means. The dotted line, shown for comparison, is the temperature sensitivity of respiration (the 

slope corresponding to the activation energy of respiration (0.65 eV) according to the MTE). 
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Figure 4.  A. Dynamics of β-glucosidase activity per unit of litter dry mass over the course of the 

experiment (days 0-28) for each temperature treatment (4-20°C).  B. β-glucosidase activity per 

unit of litter-associated fungal biomass over the course of the experiment (days 0-28) for each 

treatment temperature (4-20°C). Error bars represent standard errors (SE) of means. 
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Figure 5. Temperature sensitivity of β-glucosidase activity per unit of litter-associated fungal 

biomass shown for days 0 and 12 of the experiment. Error bars represent standard errors (SE) of 

means. The dotted line, shown for comparison, is the temperature sensitivity of respiration (the 

slope corresponding to the activation energy of respiration (0.65 eV) according to the MTE). 
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Figure 6. A. Dynamics of phenol oxidase activity per unit of litter dry mass over the course of 

the experiment (days 12-28) for each temperature treatment (4-20°C).  B. Phenol oxidase activity 

per unit of litter-associated fungal biomass over the course of the experiment (days 12-28) for 

each treatment temperature (4-20°C). Error bars represent standard errors (SE) of means. 

Activity of phenol oxidase was generally below the detection limit on days 0-6. 
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Figure 7. Temperature sensitivity of phenol oxidase activity per unit of litter-associated fungal 

biomass shown for days 12 and 28 of the experiment. Error bars represent standard errors (SE) of 

means. The dotted line, shown for comparison, is the temperature sensitivity of respiration (the 

slope corresponding to the activation energy of respiration (0.65 eV) according to the MTE). 
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Appendix 1 

Protocol for Determining Extracellular Enzymatic Activity of Microorganisms in Plant 
Litter (01/12/2018, VG)  (beta-glucosidase, xylosidase, phenol oxidase, peroxidase) 

 
Prior to Analyses 

1. Place 3.2mm diam. stainless steel beads into a beaker and cover the surface of the beads 
with diH2O. Cover beaker with foil tightly. Autoclave. 

2. Place 4 stainless steel beads in each 2-mL screw-cap tubes. Cap loosely. Autoclave. 
3. Autoclave some 1.5-mL regular and black microcentrifuge tubes. 
4. Cut approximately 5 mm off of the tapered end of the 1 mL pipette tips for each expected 

sample. Autoclave. 
5. Prepare 5 mM MOPS buffer solution (see below). Autoclave. 
6. Prepare 0.2 M carbonate stop buffer (see below). Autoclave. 

Buffers 
5.0 mM MOPS buffer (Mr=209.26; 1.046 g per 1 L) 
Add 1.046 g of MOPS to a 1L beaker. Fill container with 1 L diH2O using a graduated 
cylinder. Adjust pH to 6.5 by adding 1N NaOH solution dropwise. 
0.2 M Carbonate stop buffer (Na2CO3 monohydrate, Mr=124; 24.8 g per 1 L). 
Add 12.4 g of Na2CO3 x·1H2O to a 1L bottle. Fill container with 500 mL diH2O. pH should 
be about 11.2 (no adjustment needed). 
Combined buffer (pH 10.5) 
Mix 40 ml of MOPS buffer with 4 mL of carbonate buffer (44 mL total). 

L-DOPA for spectrophotometric assays 
Primary (and only) stock of L-DOPA is prepared by dissolving the appropriate amount in 5 mM 
MOPS buffer (see Table below). All stocks should be aliquoted (in 50-mL tubes) and frozen at   -
20C. Protect from light – wrap tubes in foil. 
Fluorogenic substrate solutions 
Primary (and only) stocks of MUF-GL and MUF-X are prepared as 0.55 mM solutions. Prepare 
stocks by dissolving the appropriate amount of substrate (see Table below) in 5 mM MOPS 
buffer. Before adding buffer to the powder, add cellosolve to help in dissolution. MUF-GL, 
MUF-X are difficult to dissolve, use sonication and gentle heating (to ca. 35 C). Dissolution 
takes a couple of hours. Aliquot into 15-mL or 50-mL tubes for daily use and store in the freezer 
at -20 C. Protect from light (black tubes or wrap in foil).  
MUF Standards 
Before adding buffer to the powder, add cellosolve to help in dissolution. MUF is difficult to 
dissolve, use sonication and gentle heating (to ca. 35 C). Dissolution takes a couple of hours. 
Stocks of MUF standards are prepared as 0.2 mM concentrations. First dissolve powder in 100 
mL of 5.0 mm MOPS buffer (see table below) to get 0.5mM solutions. Then dilute to 0.2mM 
with MOPS (e.g. 12mL of 0.5 mM solution + 18 mL of MOPS). Filter through 0.22 um 
membrane filter into a couple of sterile 15-mL tubes. Wrap in foil. Store in refrigerator at 4C. 
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Spectrophotometric assays 
Stock Molecular 

Weight 
Concentration 
(mM) 

Substrate 
(mg) 

MOPS 
buffer 
(mL) 

Cellosolve 
(mL) 

L-DOPA 197.19 3.25 320.43 500.0 ---- 
 
Fluorometric assays 
Stock Molecular 

Weight 
Concentration 
(mM) 

Substrate 
(mg) 

MOPS 
buffer 
(mL) 

Cellosolve 
(mL) 

MUF-GL 388.32 0.55 85.52 400.0 0.4 
MUF-X 326.28 0.55 44.91 250.0 0.25 
MUF 176.17 0.5 (final 0.2) 8.81 100.0 0.1 

 
 

Daily routine 
1. In the morning, take one 50-mL tube of L-DOPA from the freezer. Take two 15-mL tubes 

for each fluorogenic substrate (MUF-GL, MUF-X) from the freezer and thaw. These will 
be used as substrate solutions. No further dilution is necessary. Shake vigorously. 
Sonicate/heat to 35 C if necessary (up to 20 min) to aid in thawing/dissolving. 

2. Label each 2-mL screw-cap tube that contains steel beads with sample ID. 
3. Pipet 1.3 mL of cold MOPS buffer into each of those tubes.  
4. Add 5 leaf disks to each screw-cap tube. Cap tightly. 
5. Homogenize tubes for 3 minutes at 3,500 rpm for maple leaf disks (3 samples at a time). 

(Adjust time if different type of material is used, i.e. 2 minutes for tulip poplar, longer for 
rhododendron leaves and wood). 
 
 
 
 

In general, we have 5 temperature treatments (4, 8, 12, 16, 20C), 4 replicates, 6 sampling dates, 
(20, 20, 20, 20, 48 and 48 samples per date), i.e. at least 176 samples. 
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Spectrophotometric assays 
6. Prepare 0.3 % hydrogen peroxide solution by mixing 0.1 mL of 30% stock H2O2 and 9.9 

mL of sterile diH2O in 15-mL tube. 
7. Transfer 0.2 mL of homogenate using a cut pipettor tip (invert tube to mix, and remove 

subsamples from the middle of the suspension) from a screw-cap tube into 4 labeled 
transparent microcentrifuge tubes for spectrophotometric assays (phenol oxidase, 
peroxidase, phenol oxidase color, peroxidase color; i.e. Ph, P and Ph-C, P-C, 
respectively). I.e. take out 0.2, 0.2, 0.2 and 0.2 mL of homogenate. Repeat this process 
for each homogenized sample. 

8. Place the remaining homogenates (screw-cap tubes with beads) temporarily in the fridge. 
9. Each day, label just 2 additional tubes (Ph1 and P1) but do not add the homogenate. 

Instead, add 0.2 and 0.2 mL of MOPS buffer. These will be used as controls to check 
background absorbance of L-DOPA, i.e. these tubes will not receive any biological 
material. 

10. Pipet into groups of 4 microcentrifuge tubes:  
Tube “Sample_ID_Ph”:  1.0 mL of 3.25 mM L-DOPA (final concentration of substrate 

2.5 mM) (phenoloxidase substrate) 
Tube “Sample_ID_P”: 1.0 mL of 3.25 mM L-DOPA and 65 µL of 0.3% hydrogen 

peroxide solution 
Tube “Sample_ID_Ph-C”: 1.0 mL of MOPS buffer (this sample will serve as control 
for colored substances leaching from leaf material; do not add L-DOPA or peroxide) 
Tube “Sample_ID_P-C”: 1.0 mL of MOPS buffer and 65 µL of 0.3% hydrogen 
peroxide solution (this sample will serve as control for colored substances leaching 
from leaf material and decolorization due to peroxide; do not add L-DOPA) 
Record start time for each group of 4 tubes separately. 

11. In addition, just 2 tubes labeled Ph1 and P1 (see above) should receive 1.0 mL of L-
DOPA or 1.0 mL of L-DOPA plus 65 µL of 0.3% hydrogen peroxide, respectively, and 
will serve as controls for absorbance due to abiotic degradation of substrate or impurities. 

12. Incubate microcentrifuge tubes for about 4-6 hours (spectrophotometric assay) at 
appropriate temperature (i.e. 4, 8, 12, 16 or 20C) in the environmental chamber with 
shaking. 

13. About 30 min before measuring samples, turn on the spectrophotometer and set up the 
program (460 nm). Blank the instrument using 1 mL of MOPS buffer in the cuvette. 

14. After about 4-6 hours, centrifuge the first group of 4 microcentrifuge tubes for 1 min at 
16,000 g (rcf). Record time (to a minute) when the incubation was stopped for each 
set of 4 tubes separately. Consider the end of centrifugation as stop time. 

15. Carefully transfer (remove subsample from the middle of solution without disturbing the 
pellet) 1.0 mL from each of those 4 microcentrifuge tubes into cuvette. 

16. Measure absorbance immediately at 460 nm, record results. 
17. Repeat for other groups of 4 samples. Record stop time.  
18. Measure absorbance of samples Ph1 and P2 (just 2 of them) in the same way. Record 

absorbance and stop time. 
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Fluorometric assays. Proceed in the subdued light. 
19. Transfer 0.1 mL of homogenate (from screw-cap tubes with beads) using a cut pipettor tip 

(invert tube to mix, and remove subsamples from the middle of the suspension) from a 
screw-cap tube into 3 labeled black microcentrifuge tubes for fluorescent assays (MUF-
GL, MUF-X assays and quench control, Q). ). I.e. take out 0.1, 0.1 and 0.1 mL of 
homogenate. Repeat this process for each homogenized sample. 

20. Each day, label 2 additional tubes (GL1 and X1) but do not add the homogenate. Instead, 
add 0.1 and 0.1 mL of MOPS buffer. These will be used as controls to check for 
fluorescence in solutions of fluorogenic substrates; i.e. these tubes will not receive any 
biological material. 

21. Prepare quench solution by diluting 0.2 mM (=200 µM) MUF stock from the refrigerator 
100-fold. To do that, add 0.13 mL of this 0.2 mM stock to 12.87 mL of MOPS buffer in 
foil-wrapped 15-mL tube, mix. (This would be enough for ~12 samples, it actually equals 
to 2 µM std solution). 

22. Pipet the following substrates into black microcentrifuge tubes in 20 second intervals.  
Tube “Sample_ID_GL”: 1.0 mL of MUF-β-D-glucopyranoside (β-glucosidase 
substrate) (final concentration 0.5 mM) 
Tube “Sample_ID_X”: 1.0 mL of MUF-β-D-xylopyranoside (xylosidase substrate) 
(final concentration 0.5 mM). 
Tube “Sample_ID_Q”: 1.0 mL of quench solution. 
Tubes GL1 and X1 (see above) should receive 1.0 mL of appropriate substrate, 
respectively, and will serve as controls for fluorescence due to abiotic degradation of 
substrates or fluorescing impurities. 

23. Incubate black microcentrifuge tubes for exactly 1 hour (fluorometric assay) at 
appropriate temperature (i.e. 4, 8, 12, 16 or 20C) in the environmental chamber with 
shaking. 

24. In the meantime, prepare a set of 6 working standards and blank (1 mL each) of MUF 
from primary standard (0.2 mM stock) stored in the dark in the refrigerator (4 C). Protect 
working standards from light (i.e. prepare in black microcentrifuge tubes or keep them in 
the drawer). The final concentrations for these standards are given in the table below. 

a. To prepare these from 0.2 mM (=200 µM) stock, first prepare 10-1 dilution (i.e. 20 
µM secondary stock). Pipette 300 µL of original stock to 2.7 mL of MOPS buffer 
in 15-mL tube (foil wrapped). That’s 20 µM secondary stock. 

b. From this 20 µM secondary stock, prepare 6 working standards (see table below) 
in black microcentrifuge tubes. Use appropriate pipettors, i.e. for 20-200, 100-
1000 µL. 
 

Final standard 
concentration, µM 

Volume of 20 µM 
secondary stock, µL 

Volume of MOPS 
buffer, µL 

blank 0 1000 
0.4 20 980 
1 50 950 
2 100 900 
5 250 750 
10 500 500 
20 1000 0 



Bautz 32 
 

 
25. After exactly 1 hour, stop incubation of black centrifuge tubes from step 23 by pipetting 

0.1 mL of 0.2 M carbonate stop buffer in 20-second intervals to the black microcentrifuge 
tubes in the same order/sequence as before to stop the enzymatic reaction. Invert/mix. 
Record time (to a minute) if there is a deviation from 1-hour incubation time. 

26. Prepare a set of 6 “activated” MUF standards plus activated blank. Add 0.1 mL of 
carbonate stop buffer to microcentrifuge tubes with standards and blank before measuring 
fluorescence. (Total volume will become 1.1 mL; this change in concentration will be 
accounted for in the spreadsheet). 

27. Pipette 200 µL of each “activated” standard and blank into 0.5-mL PCR tube (7 tubes). 
Store in the dark (drawer). 

Different dilutions may be needed to measure fluorescence for different substrates and 
biological samples. I.e. 10-1 would be likely the most suitable dilution for GL and X 
samples, however, sometimes undiluted samples or 10-2 dilution may be needed.  

28. Centrifuge black microcentrifuge tubes of GL, X and Q series for 1 min at 16,000 g (rcf). 
Treat GL1 and X1 control in exactly the same way. 

29. Carefully transfer (remove subsamples from the top or middle of the solution without 
disturbing the pellet) 0.1 mL from each black microcentrifuge tube of GL, X and Q series 
into corresponding transparent microcentrifuge tubes with 0.9 mL of combined buffer to 
get 10-1 dilution and maintain pH 10.5. Mix. 

30. Transfer 200 µL of 10-1 dilution of GL, X and Q series to 0.5-mL PCR tube. Avoid 
bubbles or droplets on the walls. Keep these in the dark (drawer). 

31. Turn on the fluorometer. Measure and record fluorescence readings for blank and 6 
“activated” MUF standards. 

32. Measure and record fluorescence readings for each sample of GL, X and Q series at least 
twice. 

33. Remeasure all standards and blank. 
34. Prepare additional dilutions (e.g. 10-2) if needed for some samples or use undiluted 

samples, if fluorescence is low. Ideally, fluorescence should be in the 0.5 to 10 µM range 
(below 0.5 µM the sensitivity is questionable, above 10 µM the relationship between 
fluorescence and concentration becomes non-linear, also color may be serious issue in 
undiluted samples). If the fluorescence is too high (>10 µM), prepare appropriate 
dilutions. If the fluoresecence is too low (< 0.5 µM), move to the undiluted sample or 
prepare two-fold dilution by mixing 100 µL of undiluted sample from a black tube and 
100 µL of combined buffer directly in the 0.5-mL PCR tube. Mix and remeasure 
fluorescence. Prepare other dilutions using a combined buffer if needed (final volume in 
the PCR tube should be 200 µL, protect from light, keep in the drawer). 

In general, 
a. 0.5 to 10 µM range is ideal 
b. 10-1 dilution is better than undiluted sample, since color (due to leaching) 
may be a problem in those samples. 
c. If measuring any further dilutions or undiluted samples, it’s 
absolutely necessary to also measure corresponding Q sample at the 
same dilution to account for quenching. 


	Effects of temperature on enzyme activity of aquatic litter-associated fungi
	Recommended Citation

	Microsoft Word - Honors Thesis Finalized Draft 1.0-NB-vg.docx

