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Abstract 

Researchers and the public now widely recognize the seriousness of coastal flood risks. 

Various changes in natural processes, such as altered rainfall patterns, increased tropical 

cyclone intensities, and sea-level rise, are consequences of global warming induced by 

heightened greenhouse gas concentrations. To comprehensively understand coastal 

compound flooding, it is crucial to consider multiple processes and their interactions. 

Moreover, the growth of coastal cities and the concentration of people and assets in these 

areas make them increasingly vulnerable to flooding events. Accurately estimating the 

future flood risks faced by coastal communities necessitates addressing the compounding 

effects on coastal flood risk, taking into account not only natural driving factors like 

storms, sea-level rise, and rainfall, but also human factors, such as population and 

economy. This study aims to investigate the hypothesis that human factors can influence 

present and future coastal flooding risks as much as natural factors, and to advance the 

understanding of coastal compound flood hazards. A coupled modeling framework was 

developed to simulate coastal compound flooding, incorporating both inland river 

systems and coastal processes. An indicator was devised to estimate coastal flood risk 

that accounts for the impact of both natural processes and human activities. The results 

indicate that coastal compound flooding is a localized, coincidental issue, with the timing 

of various factors' convergence playing a critical role in flood occurrence. The severity of 

coastal floods depends on the interaction of natural factors and their compounded 

effects, as well as the extent of vulnerability associated with population growth and GDP 

increase. In northeastern South Carolina, the interplay between sea-level rise and 
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upstream discharge significantly intensifies compound coastal flooding, thereby 

exacerbating potential flood hazards in the future. Over the past 20 years, flood risk has 

consistently increased due to the escalating vulnerability of coastal communities to 

coastal floods. 
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1. Introduction

1.1 Coastal flood 

1.1.1 Three types of floods 

Flooding is the overflow of rising water onto normally dry land. It is a natural process 

caused by a series of drivers, including heavy rainfall, rapid snow and ice melt, dam 

breakage, groundwater rise, storm surge, and land sinking. Based on these drivers, 

scientists divided floods into three types: pluvial floods, fluvial floods, and coastal floods 

(Figure 1.1). Pluvial floods, sometimes also called flash floods or surface floods, occur 

when rainfall creates a flood event independent of a pre-existing water body, often in 

combination with fluvial and coastal flooding. Fluvial floods occur when excessive rainfall 

over an extended period causes a river to exceed its water storage capacity. Snow/ice 

melting and dam breaks can also cause fluvial floods. Coastal flooding refers to seawater 

inundation typically from storm surge and wave conditions caused by severe weather 

events (such as hurricanes). Coastal regions are the critical zone where all three types of 

floods can occur. In a broader definition, coastal floods can refer to any types of flooding 

that occurs in coastal regions. This thesis employs this broader definition to define coastal 

floods. 
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Figure 1.1. Three Types of Floods: 1) Pluvial floods, occur when rainfall creates a flood 

event independent of a pre-existing water body; 2) Fluvial floods, occur when excessive 

rainfall over an extended period causes a river to exceed its water storage capacity; 3) 

Coastal floods, refers to seawater inundation typically from storm surge and wave 

conditions caused by severe weather events. In a broader definition, coastal floods can 

refer to any types of flooding that occurs in coastal regions. 

1.1.2 Coastal flooding as a natural process 

As one of the most dynamic regions, the coast has always been at the forefront of changes 

in Earth's evolutionary history. The northeastern South Carolina coast exemplifies typical 

coastal evolution. Through flooding, rivers played a significant role in shaping South 

Carolina's topography. Meanwhile, interactions between the ocean and river systems 

affected this shaping process across multiple spatial and temporal scales. For example, 
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several paleochannels found offshore in Long Bay reveal the evolution of the floodplain 

in northeastern South Carolina. The original Pee Dee River system formed during the late 

Pliocene (Baldwin et al., 2006). The paleochannels formed during the glacial epoch when 

the sea level was below the present level. After the glacial epoch, sea-level rise from 

increasing global temperatures forced the shoreline to propagate landward. This 

propagation had two effects. One effect was that seawater inundation, caused by sea-

level rise, created a series of new coastal forms such as estuaries, wetlands, barrier 

islands, and inlets. The other effect was that sea-level rise interrupted the original river 

channels, leading to frequent river flooding until a new balanced environment was 

established. From a historical perspective, landward migration is a natural response of 

the shoreline to sea-level rise, storms, and other coastal processes (Barnhardt et al., 

2008). The modern coast of northeastern South Carolina is still evolving and is dominated 

by inland river systems and coastal processes, including tides and surges. In fact, coastal 

flooding in northeastern South Carolina is not a rare phenomenon associated only with 

extreme weather conditions, but rather a common occurrence that happens on a daily 

basis. 

Coastal communities often overlook daily low-intensity coastal floods, as they typically do 

not result in significant property damage or loss of life. Coastal floods related to extreme 

weather conditions, such as hurricanes or tropical storms, are treated as flood risks due 

to the substantial damage they can inflict on coastal communities. These events can cause 

extensive property damage, loss of life, and long-lasting socioeconomic impacts. From 

this perspective, coastal floods become a flood hazard when considering their influence 
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on human society. This study aims to analyze coastal floods as a risk from both natural 

and human perspectives. It is important to note that while daily low-intensity coastal 

floods may not have immediate and dramatic impacts on human society, their cumulative 

effects can create long-term hazards for coastal communities. However, these long-term 

effects will not be discussed in this study. 

1.1.3 Coastal flooding as a human-related hazard 

Coastal regions are a small part of the land that supports a significant percentage of the 

total population and economy. Since 1970, the U.S. coastal population, defined as those 

most directly affected by the coast, has grown by about 39%.  In 2010, roughly 123.3 

million people (approximately 39% of the total population) lived in the U.S. coastal 

shoreline counties, which only account for less than 10% of the U.S. land (Crossett et al., 

2013). The population density of coastal shoreline counties is roughly 446 people per km2, 

which is more than three times the national average of 105 people per km2 (Crossett et 

al., 2013). Globally, the population density of the low-elevation coastal zone (LECZ) is 

much higher than that of other regions (Neumann et al., 2015; Small & Nicholls, 2003). 

LECZ is defined as the contiguous and hydrologically connected zone of land along the 

coast and below 10 m of elevation above sea-level. In 2000, the average LECZ population 

density was about 241 people per km2, which was nearly five times the global average for 

all land areas (Neumann et al., 2015). In addition to population density, the LECZ 

population growth rate in China and Bangladesh was twice the national population 

growth rate between 1990 and 2000 (McGranahan et al., 2007). As the population 

increases in coastal areas, a large amount of rural and forest land is converted into urban 
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land to accommodate new residents. This large amount of the population represents a 

significant coastal economy. A coastal economy consists of all economic activities in the 

coastal region and is therefore the sum of employment, wages, and output in the region 

(Colgan, 2003). In 2014, the coastal economy created US$7.9 trillion in Gross Domestic 

Product (GDP) and 54.6 million jobs in the United States (NOAA, 2017).  

Since the coastal population and economy account for a large proportion of the total 

population and economy, it is necessary to understand coastal flooding in the context of 

rapid urbanization, which is the result of population and economic growth. Therefore, in 

addition to natural processes, human activity is another important factor to estimate 

compound flood risk, which is rarely mentioned in recent coastal compound flood studies 

(Gori et al., 2020; Moftakhari et al., 2017; Pietrafesa et al., 2019; Wahl et al., 2015). Most 

recent coastal compound flooding studies have focused only on natural factors, such as 

rainfall, sea-level changes, and river discharge (Moftakhari et al., 2017; Wahl et al., 2015). 

Their conclusions may lead to a misperception concerning coastal compound flooding 

studies: stronger natural driving factors, such as greater rainfall or stronger hurricanes, 

will always result in more severe flood hazards that pose a greater threat to coastal 

communities. Without considering human factors, the estimates of flooding hazards do 

not represent the true risk of flooding hazards in coastal communities. Flooding hazard is 

a compound natural and human-related issue, and therefore, human factors must be 

considered in order to assess the flooding hazard risk that coastal communities face in 

the context of human activities such as urbanization, population, and economic growth 

as while as anthropogenic climate change. To make the situation worse, the compounding 
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effect among the natural processes is not addressed adequately. After reviewing a series 

of recent studies about floods, rainfall, sea-level, and hurricanes, it is still difficult to 

conclude whether climate change will cause more flooding (as a natural 

process)/rainfall/hurricanes at a local scale. These results conflict with the awareness of 

increasing flood risk in previous studies (Ezer & Atkinson, 2014; Wahl et al., 2015; 

Wdowinski et al., 2016). 

Therefore, what are the predominate factors causing the change of the compounding 

coastal flooding risk at present and in the future: abnormal natural processes related to 

climate change or human activities related to social development, such as urbanization 

and population/economic growth? This question remains unanswered as most recent 

studies have focused only on the impact of natural processes on coastal flooding risk.  

1.2 Flood, flood hazard, and flood risk  

Before further analysis, the terminology needs to be clarified. Flooding is a natural 

phenomenon that occurs when a body of water rises to overflow land that is not normally 

submerged (Ward, 1978). In this study, the term “flood” is only referred to as a natural 

process. Not all floods are considered to be flood hazards. According to the definition of 

the United Nations International Strategy for Disaster Reduction (UNISDR), flood hazard 

is a natural process that may cause loss of life, injury or other health impacts, property 

damage, loss of livelihoods and services, social and economic disruption, or 

environmental damage (UNISDR, 2009). Flood risk is an indicator used for evaluating the 

potential losses, in lives, health status, livelihoods, assets, and services, which could occur 

to a particular community or a society over some specified future time period (UNISDR, 
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2009). In summary, flooding is a natural phenomenon, flood hazard is a natural 

phenomenon accompanied by social and economic losses, and flood risk is an estimate of 

the potential losses caused by floods in the future environment. Associated with flood 

risk, “flood exposure” is defined as the population and assets subject to flooding hazards.  

Because of the wide gaps in understanding between different groups, the simple word 

“flood” has different meanings for different people, but those meanings are often used 

interchangeably, which can cause confusion. Most theoretical researchers only consider 

flooding as a natural process, whereas the public is more concerned about floods in terms 

of social and economic losses. When designing infrastructure and buildings, engineers pay 

attention to flood risk. In fact, natural processes and social/economic losses are two 

partial views of a flooding event. Flood researchers with different backgrounds often use 

floods, flood hazards, and flood risks without distinction. As a result, these unintentional 

conflations in terminology can sometimes cause inefficient information dissemination 

from scientific communities to the public. For example, most scientific publications show 

that “flood risk” is increasing. However, the threat of floods to the public is unclear 

because in scientific publications, the term “flood risk” typically refers to the probability 

of a certain magnitude floods occurrence. According to the above terminology 

clarification, flooding does not necessarily pose a significant flood risk. This study makes 

a clear distinction between these terms.  

1.3 Coastal flood risk 

1.3.1 Factors affecting coastal flood risk 

Researchers and the public have reached a consensus that coastal flood risk is serious at 
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present (IPCC, 2015; Vitousek et al., 2017; Wahl et al., 2015; Wdowinski et al., 2016). 

Based on the information in above section 1.1.2 and 1.1.3, factors that affect coastal flood 

risk can be roughly classified into two classes (Figure 1.2). One class is the factors 

connected to natural flood processes, including sea level (Mousavi et al., 2011), 

precipitation/evaporation (Xu et al., 2019), discharge (Bevacqua et al., 2020), soil 

moisture (Cao et al., 2020). These factors are influenced by climate change. The other 

class is the factors related to social communities, such as population growth (Ibrahim et 

al., 2017), economic development (Jevrejeva et al., 2018), and land use/cover change 

(Baky et al., 2020). Especially, land use/cover change also has an effect on natural flood 

processes by changing the generation of surface runoff.  

 

Figure 1.2. Factors affecting coastal flood risk. 1) Natural flood process, including sea 

level, precipitation/evaporation, discharge, soil moisture and so on, 2) Social 

community factors, including population increase, economic development, and land 

use/cover change. In addition, land use/cover change also has effect on natural flood 

process. 
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1.3.2 Effect of Climate change on coastal flood   

Several important coastal flooding driving factors can be affected by climate change. The 

scientific community and the public have become increasingly aware that global warming 

caused by increased concentrations of greenhouse gases may result in a series of changes 

in natural processes, like rainfall patterns, tropical cyclone intensities, and sea-level (IPCC, 

2001; 2008; 2015). General Circulation Models (GCMs) have been employed to analyze 

climate change under different CO2 concentration scenarios. The results of these models 

and related downscale studies have suggested increased rainfalls due to enhanced 

hydrological circulation, more frequent high-intensity tropical cyclones, and higher sea-

level rise rates than in the past (Emanuel, 2005; Hirabayashi et al., 2008; Horton et al., 

2008). A series of extreme natural disasters in the new century has made the general 

public aware of ongoing climate change (Figure 1.3). According to records from the 

Emergency Events Database (EM-DAT) (Guha-Sapir, 2017), the average annual natural 

hazards after 2000 have more than doubled compared with that between 1950 – 1999. 

Increases in all three of these natural disasters: increased rainfalls, more frequent high-

intensity tropical cyclones, and higher sea-level rise rates than in the past, indicate an 

environment sensitive to climate change. In addition, meteorological and hydrological 

processes are also affected by climate change. Based on the latest EM-DAT records, 

annual storms (including tropical cyclones, extra-tropical cyclones, and convective 

storms) and annual floods (including flash floods, riverine floods, and coastal floods), 

which are indirectly affected by global warming, have increased by almost two times and 

more than three times since 2000, respectively.  
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Figure 1.3. The history of billion-dollar disasters in the United States each year from 

1980 to 2021, showing event type (colors), frequency (left-hand vertical axis), and cost 

(right-hand vertical axis.) The number and cost of weather and climate disasters is 

rising due to a combination of population growth and development along with the 

influence of human-caused climate change on some type of extreme events that lead to 

billion-dollar disasters. NOAA NCEI. 

Although uncertainties still exist in the studies of flood trends (detail in Section 1.4.2), 

researchers have reached a consensus that climate change will affect coastal zones and 

coastal flooding. Past studies have examined several important factors related to climate 

change to estimate future coastal flooding hazards and risks faced by coastal 

communities. Among the factors, sea-level rise and storm intensity/pattern changes are 

considered to be the two main factors affecting coastal flooding in the future. 

1.3.2.1 Sea-level rise 

Since the last glacial period ended about 15,000 years ago (Severinghaus & Brook, 1999), 
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sea-level rise has been one of the causes of global flooding. When the glacial period 

ended, global temperature increase caused thermal expansion of seawater and glacial ice 

melting, which led to increase in sea-level and land-surface runoff, respectively (Marshall 

& Clarke, 1999; Lambeck & Chappell, 2001). Although studies on exact sea-level trends 

are subject to uncertainty (Oppenheimer et al., 2016; Santamaría-Gómez et al., 2017), 

there is no doubt that most coastal areas in the world have experienced sea-level rise 

periods. According to IPCC report, the global average sea-level rise in 2100 is projected to 

vary under three different scenarios (IPCC, 2019). Under RCP2.6, the sea-level rise may 

be 0.43m, with a likely range of 0.29m to 0.59m. In the RCP4.5 scenario, the projected 

rise is 0.55m, with a range of 0.39m to 0.72m. The most severe scenario, RCP8.5, predicts 

a rise of up to 0.84m, with a likely range between 0.61m and 1.10m. RCP means the 

Representative Concentration Pathway (RCP) and is a greenhouse gas concentration 

trajectory used by IPCC to evaluate climate change. Different RCPs describe different 

climate futures depending on the volume of greenhouse gases emitted in the years to 

come (van Vuuren et al., 2011). For example, RCP2.6, RCP4.5, and RCP8.5 are labeled 

according to a possible range of radiative forcing values in the year 2100 (2.6, 4.5, and 8.5 

W/m2, respectively). Ninety percent of the coastal areas will experience a sea-level rise of 

more than 0.2 meters if global warming reaches two degrees higher than the pre-

industrial period (Jevrejeva et al., 2017).  

Current studies show that long-term sea-level rise is the main reason for accelerated 

coastal flooding in the United States. Ezer and Atkinsion (2014) used the duration of 

annual minor tidal flooding (defined as 0.3 m above the average higher high water level) 
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to evaluate the flooding conditions on the east coast of the United States. They found 

that this duration increased by 20 hours per year from pre-1970 to 1971-1990, and further 

increased by 50 hours per year from 1971-1990 to 1991-2013. The spatial variations of 

these increases resembled those of sea-level rise (Ezer & Atkinson, 2014). Similarly, Sweet 

and Park (2014) also found that the relative sea-level rise has caused the water level to 

increase above the thresholds of minor coastal flooding elevation in the U.S. that were 

set by the National Weather Service (Sweet & Park, 2014). It should be noted that the 

above studies are mainly based on hydrodynamic model simulations; therefore, in these 

studies, flooding was treated as a natural process, and the rising trends found do not 

imply increased coastal flooding hazards or flooding risks. Nonetheless, sea level changes 

related to climate change is an important factor need to be considered in coastal flood 

simulations. 

1.3.2.2 Hurricane pattern change 

At present, the link between global warming and its effects on hurricanes is still unclear 

(Anthes et al., 2006; IPCC, 2015; Pielke Jr et al., 2005). This uncertainty is due to the 

following three reasons: (1) No direct connection has so far been established between 

greenhouse gas emissions and the behavior of hurricanes (Walsh, 2004; Walsh et al., 

2016; Watson & Albritton, 2001); (2) The change in hurricane intensity in the future may 

be small in the context of the observed variability (Henderson-Sellers et al., 1998; Knutson 

et al., 2010; Knutson & Tuleya, 2004); (3) The future damage to society caused by 

hurricanes could be much less than the wealth and population that will grow in the future 

(Pielke Jr et al., 2005). In this situation, studies currently focus mainly on whether 
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hurricane patterns, including hurricane frequency and intensity, will change in the future 

and how to describe these changes. 

Landsea et al. (1996) investigated a five-decade hurricane record in the North Atlantic 

basin and found that the frequency of intense hurricanes continued to decrease from 

1944 to 1995. Chan and Shi (1996) studied hurricanes in the western North Pacific basin 

and found that the number of tropical cyclones experienced a period of decrease and 

then an increase, showing an obvious second-order variation such that the activity had 

been on a generally upward trend since the late 1980s. There has been no observable 

trend in hurricane frequency in the following decades based on records. The 

inconsistencies in hurricane frequency for different ocean basins have been confirmed in 

a series of recent studies (Knutson et al., 2010; Landsea & Franklin, 2013; N. Lin & 

Emanuel, 2016; K. J. E. Walsh et al., 2016). 

Compared with the uncertain frequency, researchers have reached consensus on future 

changes in hurricane intensity. Theoretically, the heat stored in the upper ocean near the 

sea surface provides the energy that fuels the development of hurricanes. Therefore, the 

increase in sea surface temperature caused by greenhouse gases provides a more 

favorable environment for the formation and growth of hurricanes. Emanuel (2005) 

created an index of the potential destructiveness of hurricanes to evaluate the hurricane 

changes. This index is based on total power dissipation, which means that it is integrated 

over the entire lifetime of a cyclone. Emanuel used this index to investigate hurricanes in 

the past 30 years and found that the index has increased significantly since the mid-1970s. 

Webster et al. (2005) examined the intensity of tropical cyclones for more than 35 years 
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in the context of increasing sea surface temperature. They found that the number of 

category-4 and -5 hurricanes increased different levels in the North Pacific, India, 

Southwest Pacific, and North Atlantic. Emanuel used a Carnot cycle model to estimate the 

maximum intensity of future tropical cyclones under the increased atmospheric CO2 

content. The results show that twice the present CO2 content will increase the destructive 

potential of hurricanes by 40% to 50% (Emanuel, 1987). Yet, based on past studies, there 

is still low confidence in any robust long-term changes in tropical cyclone activity and 

there is low confidence in the attribution of global changes to any particular cause under 

climate-change scenarios (IPCC, 2015). 

The potential impact of high-intensity hurricanes has been examined in several studies 

based on hurricane pattern change. Mousavi et al. (2011) projected that flood elevations 

caused by catastrophic hurricane surge in the Gulf of Mexico will rise by 0.5 m and 1.8 m 

by the 2030s and 2080s, respectively. Due to these uncertainties in future hurricane 

patterns, the future impact of climate change on landfalling tropical cyclones is also 

unclear (Woodruff et al., 2013). Even though uncertainty exists in hurricane pattern 

change studies, there is no doubt that hurricanes can be an important trigger of coastal 

flooding. Extreme rainfall and storm surge, which affects coastal flood, are usually 

accompanied by hurricanes. Under this situation, it is necessary to estimate the impact of 

hurricanes, especially extreme hurricanes, on the entire coastal compound flood process. 

In order to simulate the extreme weather event, extreme rainfall, extreme storm surge, 

and extreme discharge are simplified as indexes to represent and describe the extreme 

weather conditions in this study.  
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1.3.3 Effect of urbanization on coastal flood risk  

Urbanization, particularly population growth and GDP increase, has significant effects on 

coastal flood risk. The expansion of coastal cities and the increasing concentration of 

people and assets in these areas make them more vulnerable to the impacts of flooding 

events. Additionally, urbanization alters natural landscapes, disrupts ecosystems, and 

contributes to climate change, exacerbating the frequency and severity of coastal 

flooding. 

As dynamic and critical zones of human civilization, coastal regions have experienced 

significant land use/cover changes in the past two hundred years since the Industrial 

Revolution. Even though coastal regions only account for 23% of the contiguous land of 

the United States, the changes that have taken place in the last 50 years in the coastal 

regions account for approximately 50% of all land-cover changes and 43% of all 

urbanization in the contiguous land of the United States (Reidmiller et al., 2018). Between 

1996 and 2010, approximately 8% of the coastal region changed, including the loss of 

more than 40,000 square kilometers of forest and more than 4,000 square kilometers of 

wetlands (Reidmiller et al., 2018). Nearly 15,000 square kilometers of other land-use 

types have become urban, which is a rate three times that of the interior of the U.S 

(Reidmiller et al., 2018). As urban areas expand along coastlines, more people and assets 

are exposed to the risk of coastal flooding. The high population density in coastal regions, 

combined with the concentration of critical infrastructure and economic activity, 

increases the potential for substantial damage and loss of life during flood events 

(Hallegatte et al., 2013; Neumann et al., 2015).  
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The economic value of property loss and population in flood-prone areas are two human-

related factors affecting the estimation of flood risk. It is difficult to estimate the 

vulnerability of social communities to coastal flooding. At present, the property value of 

the potential loss is a common metric for showing the level of flood risk. This study will 

also employ a GDP dataset to evaluate the weight of economic loss in flood risk 

estimation. While advances in modeling and computation have improved our ability, they 

do not support the analysis of flood risk for every single person. There is no doubt that a 

flood affecting one person is different from a flood affecting ten people. So, from a social 

view, a current flood affecting ten people may imply an increase in flood risk compared 

to a flood affecting one person ten years before. However, reasons for increased flood 

risk may include both population growth and climate change. This thesis aims to analyze 

which factor is more important for the flood risk change in the past twenty years in South 

Carolina. The population dataset and GDP per capita will also be employed to enrich the 

view of flood risk.  

1.3.4 Coastal flood and flood risk in South Carolina 

This thesis will focus on South Carolina as the study domain in order to leverage the high-

resolution local scale model and data. However, the developed methods and conclusions 

will be applicable to other areas in the world. Coastal flooding usually occurs in autumn 

in South Carolina. According to periods of heavy rainfall, there are three types of flood 

regions in South Carolina shown in Figure 1.4: the mountainous region in the west with a 

winter maximum; the coastal plain with a distinct summer maximum; and the region in 

between with a summer‐autumn maximum (Changnon, 1994). It is worth noting that 
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although heavy rainfalls usually occur during summer, coastal floods usually occur in early 

autumn due to the weather conditions and the soil’s water storage capacity. There are 

four pathways for heavy rainfalls in South Carolina: (1) large-scale synoptic storms with 

low pressure centers and fronts, with the highest frequency in winter or early spring and 

lowest frequency in summer (Maddox et al., 1979); (2) isolated convective thunderstorms 

with highest frequency in summer and early autumn (Barnes & Newton, 1986); (3) 

infrequent tropical storms that occur from June through November (Cry, 1967); and (4) 

sea-breeze circulation along the Atlantic coast during summer (Moran, 1989). As shown 

in the timeline (Figure 1.5), isolated convective thunderstorms and sea-breeze circulation 

bring moisture to the land and saturate the soil by the end of summer. When tropical 

cyclones occur in autumn, it is often easy for them to trigger severe coastal floods on the 

soil that has already been saturated by isolated convective storms and sea-breeze 

circulation. Most of the recent extreme coastal floods in South Carolina occurred between 

September and October and were caused by tropical cyclones, such as Hurricane 

Matthew (Sep 28 – Oct 9, 2016) and Hurricane Florence at (Aug 31 – Sep 17, 2018).   

In 1996, Hurricane Fran (Aug 23 – Sep 8) hit the coastal area of South Carolina and caused 

US$ 20 million in insured property losses (Mayfield, 1996a). In contrast, tropical storm 

Arthur (Jun 17 – Jun 21, 1996) and Hurricane Bertha (Jul 5 – Jul 14, 1996) also hit the same 

area at earlier times that year but did not cause coastal flooding related losses 

comparable to those incurred due to Hurricane Fran. The insured property damage for 

tropical storm Bertha was 135 million US$ (Lawrence, 1996), and no significant damage 

associated with Hurricane Arthur was reported (Mayfield, 1996b). There are two possible 
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reasons to explain this. One is that the soil in South Carolina in late summer had not been 

saturated yet, thus lacking a necessary condition for severe coastal flooding. The other 

possible reason is due to the difference between coastal flooding versus coastal flooding 

hazard. This uncertainty highlights the necessity of employing an integrated approach to 

consider high-resolution multiple natural driving factors of coastal flooding as well as 

human activity factors to correctly estimate the flooding risks that coastal communities 

face presently and in the context of future climate change. In this study, initial soil 

moisture before the hurricane will be considered as a factor affecting coastal flood, which 

will be included in the flooding simulation. 

 

Figure 1.4. Three precipitation regions in South Carolina.1) the mountainous region 

with maximum precipitation in winter; 2) the midland region with maximum 

precipitation in summer-autumn; 3) the coastal plain region with maximum 

precipitation in summer. [from Changnon, 1994] 
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Figure 1.5. Major causes of heavy rainfall and their durations 1) large-scale synoptic 

storms from winter to early spring; 2) isolated convective thunderstorms from early 

summer to early autumn; 3) sea-breeze circulation in summer; 4) tropical storms from 

late summer to autumn. 

1.4 Uncertainties in previous studies 

Coastal flooding is critical because it can pose a risk to coastal communities. Currently, 

there are some uncertainties in coastal flood studies, such as: 1) how compound flooding 

occurs on coasts, including how different natural factors interact with each other, and 2) 

whether floods, as natural processes, or flood risks, as human-related issues, are 

increasing. 

1.4.1 Coastal compound flood studies 

In previous analyses of river floods, the key variable used to estimate the severity of a 

flood was the discharge in the river channel, as determined by observation or hydrological 

modeling. For sea water inundation caused by storm surges, the flooding area determined 

from an ocean/coastal hydraulic model is the main factor for analysis. However, neither 

of these two variables (discharge and flooding area) can give us a complete view of how 

a coastal compound flood occurs. Before moving forward, here is the review of the 

complete hydrological and coastal processes related to coastal flood events. 
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In nature, the atmosphere, river, and coastal processes work together to shape the 

coastal environment and influence the occurrence of coastal flooding at various temporal 

and spatial scales. These processes include precipitation, evapotranspiration, infiltration, 

overland flow, subsurface flow, ground water flow (baseflow), river channel flow, tide, 

wave (including storm surge) and current, all of which contribute to coastal flooding 

(Figure 1.6). These processes have often been studied and predicted separately by people 

with the expertise in this area. For example, tide, wave, and storm surge are usually 

simulated by coastal ocean models governed by hydrodynamic equations with 

wetting/drying cell capabilities. Floods in coastal ocean models mainly include seawater 

inundation caused by storm surge. However, hydrological processes, such as infiltration, 

overland flow, river channel flow, and groundwater flow, are usually simulated in 

hydrological models, in which pluvial floods are represented as a 1-dimensional (1D) 

quantity along a river channel, governed by a set of 1D Saint-Venant equations. 

Additionally, inland inundation in a flooding event, as a 2-dimensional (2D) process, is 

usually simulated by hydraulic models governed by 2D shallow-water equations. Some 

hydrological processes are ignored in these 2D-inundation models, such as infiltration and 

groundwater. The above differences between the 2D-inundation model and the 

hydrological model result in the discrepancies between floods represented by these 

models. Flooding is represented as a 2D phenomenon in the 2D-inundation model, 

whereas as an 1D river discharging process in the hydrological model. 
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Figure 1.6. Natural process affecting coastal environments and coastal flooding: 1) 

Precipitation, 2) Evapotranspiration, 3) Infiltration, 4) Overland flow, 5) Subsurface 

flow, 6) Baseflow, 7) River channel flow, 8) Sea level change (including tide, wave/storm 

surge, and current). 

To truly understand and accurately predict complex coastal flooding events in this context 

of climate change, multiple processes and their interactions must be considered 

simultaneously. A new term, “compound event,” was first introduced in the 

Intergovernmental Panel on Climate Change (IPCC) report (Field et al., 2012). It has three 

meanings in different situations: (1) two or more extreme events occurring 

simultaneously or successively, (2) the combinations of extreme events with underlying 

conditions that amplify the impact of the events, (3) a combination of events that are not 

themselves extremes but lead to an extreme event or impact when combined (Field et 

al., 2012). In short, compound events are a combination of processes (climate drivers and 
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hazards) that lead to significant impacts (Zscheischler et al., 2018). Coastal flooding is a 

typical compound event for environmental researchers. Coastal compound flooding is a 

coincidence of multiple coastal processes that can contribute to the overflowing of rising 

water in the coastal area, including precipitation, overland routing, infiltration, sea-level 

change (surge, tide, and wave), and hurricanes. Globally, long-term sea-level rise, 

extreme rainfall, and storm surges are considered to be important drivers of coastal 

compound floods (IPCC, 2015; Nicholls & Cazenave, 2010; U.S. Global Change Research 

Program, 2009). In recent years, more intense rainfall due to more frequent extreme 

storms (such as hurricanes) has also been responsible for a series of coastal floods (N. Lin 

& Emanuel, 2016; Wahl et al., 2015). Hydrological background, including soil moisture and 

upstream discharge, is another important factor in causing coastal compound floods. The 

blocking effect of storm surge on river discharge is a typical phenomenon in compound 

coastal flooding (Pietrafesa et al., 2019; van den Hurk et al., 2015).  

The two primary driving processes of a coastal compound flooding event are rainfall as a 

freshwater source and coastal water level as a seawater source. The rainfall can have a 

direct impact on the simulation area by falling directly into the domain, or it can have an 

indirect impact by generating streamflow upstream that flows into the model domain as 

a lateral boundary condition. Traditionally, the two types of processes have been studied 

by different communities: hydrologists on freshwater-related processes and 

oceanographers on seawater-related processes. With the increasing recognition of the 

compound flooding concept, efforts have been made in recent years to link river and 

ocean processes. Coupling method should be applied to establish the link between 
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hydrological model and hydraulic model. 

Currently, the one-way coupling method, presently dominates coastal modeling 

strategies. This one-way prescribes the upstream river discharge into the study area by 

setting an upstream boundary condition. A coupled model named the ADCIRC Surge 

Guidance System, Scalable, Terrestrial, Ocean, River, Meteorological (ASGS-STORM) was 

developed to incorporate tides, waves, winds, rivers and surge to simulate total water 

level at coastal regions (Dresback et al., 2013). In ASGS-STORM, the discharges simulated 

by the hydrological component Hydrology Laboratory Research Distributed Hydrologic 

Model, (HL-RDHM) described in the User Manual v. 3.00 (HL-RDHM User Manual v. 3.0.0, 

2009) were passed to the coastal model ADCIRC as a boundary, but the processes 

associated with rainfall that fell directly into the model domain were not considered. 

Bakhtyar et al. (2020) used a hydraulic/hydrodynamic model HEC-RAS/D-Flow FM to 

simulate severe historical tropical cyclones in the Delaware River Basin, with the National 

Water Model (NWM) providing an upstream discharge boundary condition and the 

ADCIRC and WW III models providing the downstream boundary condition of water levels. 

Similar to ASGS-STORM, the direct impact of rainfall was not represented in this model 

system (Bakhtyar et al., 2020). Other hydraulic/hydrodynamic models, such as Delft3D 

(Muñoz et al., 2022) and the Semi-implicit Cross-scale Hydroscience Integrated System 

Model (SCHISM) (Ye et al., 2020) were also used to simulate total water level in coastal 

regions with upstream discharge forcing from NWM. Given the current stage of numerical 

modeling development, we have also employed a one-way coupling technique for our 

coastal flood modeling endeavors. Thus far, the role of the non-linear interactions 
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between the driving forces has not been quantitatively assessed 

It is intellectually anticipated that a compound flood induced by multiple driving factors 

(e.g. simultaneous storm surge, upstream discharge, and rainfall) may be expected to 

inflict greater damage than the damage induced by a single driving force. However, it is 

unknown whether the damage caused by a compounding flood would exceed the linear 

combination of the damages caused by those same driving forces, but individually and 

independently, rather than simultaneously as in an interactively coupled compounding 

flood. In other words, because the role of the non-linear interactions between the driving 

forces has not been quantitatively assessed, it remains unclear what the difference will 

be between using interactively coupled modeling methods rather than modeling the 

floods caused by each individual driving forces independently and then linearly combining 

the results.  

1.4.2 Flood trend studies 

Climate model simulations show that global warming has intensified the global water 

cycle. At the beginning of the 21st century, the IPCC synthesis report predicted that the 

magnitude and frequency of flooding may increase in many areas due to the increased 

frequency of heavy rainfall events (IPCC, 2001). It is worth noting that the increase in the 

magnitude and frequency of flooding is not based on actual flood records, but a projection 

based on increased rainfall due to global warming. Milly et al. (2002) analyzed the annual 

maximum monthly-mean discharge of 29 large rivers over more than 30 years of 

observations and global numerical simulations. The results showed that the frequency of 

major floods (1% annual chance flood) increased during the 20th century (Milly et al., 
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2002). However, the monthly-mean discharge data used by Milly et al. (2002) is not 

precise enough for flood study. It is vital to use peak discharge data to analyze flood 

processes.  

Despite the results of increasing flood shown by global-scale studies and local river basin 

scale case studies suggest that the frequency of flooding has not been consistently 

increasing. Schmocker-Fackerl and Naef (2010) used long-term (up to 105 years) 

discharge data on rivers in Switzerland to investigate whether the frequency of flooding 

has increased. The results show that the trend of flood frequency varied spatially and 

temporally and fluctuated due to large-scale atmospheric circulations. Delgado et al. 

(2010) used the annual maximum discharge from four gauge stations in the Mekong river 

basin (Southeast Asia) to investigate flood trends and variabilities. To reveal the trend and 

variability of floods with a variety of statistical measures, three statistical methods were 

used in their analysis, including the Mann Kendal test (MK), ordinary least squares with 

resampling (OLS), and non-stationary generalized extreme value function (NSGEV). The 

results from all three methods indicate that the likelihood of extreme flooding increased 

in the second half of the 20th century, but the probability of average flooding decreased 

(Delgado et al., 2010).  

In addition to the above discharge-based studies, flood trends can also be estimated using 

data from insurance databases, news reports, and so on. According to the Munich RE 

insurance database, the number of annual floods has almost doubled since 1980 (Figure 

1.7), in line with the results of the above theoretical and model studies. However, the 

trend of catastrophic floods seemed to occur in a random pattern (Figure 1.8). The 
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increase in the total number of flooding events in the database may be due to the 

development of the insurance industry. The number of catastrophic floods may better 

reflect actual trends. Since 1985, the Global Active Archive of Large Flood Events (GAALFE) 

has been an active program supported by the University of Colorado to record flooding 

events based on news, governmental, instrumental, and remote-sensing sources 

(Brakenridge, 2010). The database provides detailed flood information, including the 

location of flood-affected areas, the duration of a flood, fatalities, main cause, and 

severity class. The severity class is on a 1-2 scale, where class 1 indicates large flood events 

with a recurrence interval < 20 years; class 1.5 indicates very large flood events between 

20 to 100 years; class 2 indicates extreme flood events > 100 years. No evident increase 

in flooding was observed from the GAALEF database records (Figure 1.9). From 1985 to 

2008, coastal flooding increased significantly. After 2008, coastal flooding still increased 

slightly compared to the 1990s (Figure 1.9). In all coastal floods from 1985-2019, heavy 

rain has been the main cause, and tropical cyclones were only a minor factor (Figure 1.10). 

 

Figure 1.7. Number of flood events (1980-2018) (Data Source: Munich RE) 
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Figure 1.8. Number of catastrophic flood events (1980-2018) (Data Source: Munich RE) 

 

Figure 1.9. Number of reported flood events with different severities (1985-2019) (Data 

Source: Global Active Archive of Large Flood Events) 
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Figure 1.10. Number of coastal floods with different causes (Data Source: Global Active 

Archive of Large Flood Events) 
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1.4.3 Flood risk studies 
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of assets subject to flooding hazards. Two methods based on population and land 

use/cover, respectively, were used to estimate a damage caused by 1% annual chance 

flood. The result of Jongman et al. (2012) suggests that the global economic exposure to 

the flood was US$46 trillion (by population) /US$27 trillion (by land use) in 2010 and will 

increase to US$158 trillion (by population) / US$80 trillion (by land use) in 2050. In order 

to gauge flood risk in the future global warming environment, Hirabayashi et al. (2013) 

estimated global flood risk based on 11 climate models and demonstrated that under 

high-concentration CO2 scenarios, flood frequency will increase significantly in Southeast 

Asia, Peninsular India, Eastern Africa, and Northern Andes, but will decrease in some 

areas such as the Ob river basin and northern Europe. Global exposure to flooding also 

increases with global warming (Hirabayashi et al., 2013). They also pointed out that more 

attention should be paid to coastal communities in lower latitudes, where flood 

frequency and population are both projected to increase.  

Most flood risk estimation studies are conducted on large-scale or global-scale with low 

resolutions. Therefore, flood-affected areas were estimated through either a simplified 

relationship between flood area and water depth or rough global model projection. 

Additionally, human activities are difficult to represent in these low resolution studies. To 

overcome these deficiencies, a high-resolution local-scale coupled model that can 

represent multiple natural driving factors, such as hydrological and inundation processes, 

as well as local human factors such as population and GDP data sets, will be employed in 

this study. 

Moreover, for researchers, current global model predictions and discharge observations 
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provide only a partial view of flood risk as a natural process. For the public, flood 

information in the news and other media offers a similarly limited perspective on flood 

risk, which only represents flooding as a natural hazard. Although some studies indicate 

rising trends in flooding, these trends are often not found in other studies that use local-

scale flood observational records. One of the reasons for these inconsistent and 

contradictory results is the interchangeable use of the key terms discussed in section 1.2. 

For instance, floods as natural processes are represented by discharge in model-based 

studies, whereas floods as hazards and risks are estimated based on observations/records 

involving human factors. Therefore, to accurately estimate the future flood risks that 

coastal communities face, it is essential to address the compounding effects on coastal 

flood risk by considering not only a variety of natural driving factors (such as storms, sea-

level rise, and rainfall) but also human factors, such as population and economy. 

1.5 Research goal and objective 

This study aims to test the hypothesis that human factors can impact present and future 

coastal flooding risks to coastal communities as much as natural factors and to advance 

the understanding of coastal compound flood hazards. To achieve this goal, a 

comprehensive method will be developed to estimate coastal flooding risk. Both natural 

processes and human-related factors (such as GDP per capita and population density) will 

be considered and examined to address their impact on coastal flooding risk. This study 

will follow these three steps to achieve the research goal: 

1. Design a modeling framework to simulate coastal compound flooding with 

representations of both inland river system and coastal processes. Analyze how a 



 31 

compound flood happen through this modeling framework. 

2. Create an indicator to estimate coastal flood risk that reflects the impact of both natural 

processes and human activities. Test the sensitivity of this indicator to changes in natural 

and human driving factors such as sea-level, discharge, population density and GDP per 

capita.  

3. Model historical coastal flood events in South Carolina and estimate their flood risk by 

applying the above modeling framework and flood risk estimation method.
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2 Methods and data

2.1 Methods 

2.1.1 Flood risk calculation 

To quantitatively estimate flood risk, a Flood Risk (𝐹𝑅) was defined based on GDP per 

capita, population density, and flood area as follows: 

𝐹𝑅 = ∑(𝐷 × 𝐺𝐷𝑃 × 𝐴𝑟𝑒𝑎) (2.1) 

where 𝐷 is the population density, 𝐺𝐷𝑃 is the gross domestic product per capita, and 

𝐴𝑟𝑒𝑎  is the flooding area caused by a flood at a certain magnitude (base on return 

period). For each model run, the flooding area is a certain output variable resulting from 

a series of model inputs, such as rainfall, sea-level, and discharge. The physical meaning 

of 𝐹𝑅 is the GDP affected by a flood event with a certain flood magnitude. As a common 

indicator, GDP is widely used in evaluating economic estimation. It is a convenient way to 

evaluate the damage of floods worldwide through GDP since GDP is relatively easy to 

obtain. By the definition of 𝐹𝑅, flood risk is a result of both natural factors and human 

factors in a flood event. 

2.1.2 Models 

In this study, the National Water Model (NWM) hydrological model and the Regional 

Ocean Modeling System (ROMS) ocean model were coupled with an inundation model 

(TELEMAC-2D) to simulate discharge, water depth and flooding area in the coastal region 
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(Figure 2.1). TELEMAC-2D is the central component of the modeling system. Since the 

accuracy of the inputs is crucial for the reliability of the results, we attempted to use the 

discharge from United States Geological Survey (USGS) gauge stations for all the river 

inlets. Unfortunately, due to limited availability of observational data, we were only able 

to use discharge data from two USGS gauge stations for two of the river inlets, while for 

the remaining inlets, we had to rely on discharge simulated from the NWM. 

 

Figure 2.1. Model structure. River discharge from USGS observation and inland 

hydrological model NWM, water level from the coastal ocean model ROMS, and rainfall 

from observation were fed into the inundation model TELEMAC-2D. Discharge, water 

depth/level and flooding area were simulated. 

2.1.2.1 Inundation model TELEMAC-2D 

TELEMAC-2D is an integrated suite of solvers for studies about free-surface flow 

containing the modules SISYPHE, NESTOR, TOMAWAC, ARTEMIS, MASCARET, TELEMAC-

2D, and TELEMAC-3D. TELEMAC-2D is a module for estimating free-surface flow with two 

horizontal dimensions, which is employed in the thesis for modeling 2D-inundation of 

coastal flooding. This module uses an unstructured finite-element mesh and two 
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horizontal components of velocity to calculate the depth of water at each point. Basically, 

the TELEMAC-2D module solves two-dimensional Navier-Stokes equations, written as: 

𝜕ℎ

𝜕𝑡
+ 𝐮 ∙ ∇ℎ + ℎ ∙ ∇𝐮 = 𝑆ℎ (2.2) 

𝜕𝑢

𝜕𝑡
+ 𝐮 ∙ ∇𝑢 = −g

𝜕𝑍

𝜕𝑥
+

1

ℎ
∇(ℎ𝑣𝑡∇𝑢) + 𝑆𝑥 (2.3) 

𝜕𝑣

𝜕𝑡
+ 𝐮 ∙ ∇𝑣 = −g

𝜕𝑍

𝜕𝑦
+

1

ℎ
∇(ℎ𝑣𝑡∇𝑣) + 𝑆𝑦 (2.4) 

𝜕𝑇

𝜕𝑡
+ 𝐮 ∙ ∇𝑇 =

1

ℎ
∇(ℎ𝑣𝑇∇𝑇) + 𝑆𝑇 (2.5) 

where ℎ is the depth of water (unit: 𝑚); 𝑢, 𝑣 are the velocity components of vector u 

(unit: 𝑚 𝑠⁄ ); 𝑇 is a passive (non-buoyant) tracer, which can be water temperature (unit: 

𝑔 𝑙⁄  or ℃); g is gravity (unit: 𝑚 𝑠2⁄ ). 𝑇 , ℎ, 𝑢 , 𝑣  are unknowns that need to be solved 

through these equations. 𝑣𝑡 , 𝑣𝑇  are the momentum and tracer diffusion coefficients 

(unit: 𝑚2 𝑠⁄ ), which are 10-6 𝑚2 𝑠⁄  as default constant value. 𝑍 is free surface elevation 

(unit: 𝑚).  𝑡 is time (unit: 𝑠). 𝑥 and 𝑦 are the horizontal space coordinates (unit: 𝑚). 𝑆ℎ 

and 𝑆𝑇 are the source/sink terms of fluid and tracer respectively. 𝑆𝑥 and 𝑆𝑦 are source 

terms representing the wind, Coriolis force, and bottom friction. 

TELEMAC-2D uses a rainfall-runoff model developed by the US Soil Conservation Service 

(SCS) to calculate runoff potential, which means surface runoff. The runoff potential in 

the SCS model is defined by a unique parameter called Curve Number (CN), which is a 

function of hydrological soil groups, land use/cover, hydrologic surface condition of native 

pasture, and antecedent moisture conditions (Chow et al., 1988). In theory, CN values 

range from 0 to 100. For impervious and water surfaces, the CN value is 100, which means 
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all rain that falls on the ground becomes surface runoff. In my thesis, a lookup-table 

method, which is based on the results of a global CN number estimation using satellite 

and geospatial data (Hong & Adler, 2008), is applied for assigning CN value. The CN 

method is described as: 

𝑃 = 𝐼𝑎 + 𝐹 + R (2.6) 

𝑅

𝑃 − 𝐼𝑎
=

𝐹

𝑆
 (2.7) 

𝐼𝑎 = 𝜆𝑆 (2.8) 

S=
25400

𝐶𝑁
− 254 (2.9) 

where 𝑃 is total rainfall (𝑚𝑚), 𝑅 is direct surface runoff (𝑚𝑚), 𝐹 is the actual infiltration 

(𝑚𝑚), 𝑆 is the amount of the potential maximum retention (𝑚𝑚), 𝜆 is initial abstraction 

coefficient, 𝐼𝑎is initial abstraction, and 𝐶𝑁 is curve number. In reality, the surface runoff 

is also influenced by the soil moisture condition. In my thesis, Antecedent Moisture 

Conditions  were considered for the determination of 𝜆 in each model run.  

TELEMAC-2D has supported the Soil Conservation Service Curve Number (SCS-CN) 

method since 2013. The SCS-CN is a widely used calculation method for determining 

effective rainfall formation based on precipitation and area-specific runoff factors. With 

this feature, runoff generation is linked to overland flow, allowing TELEMAC-2D to be 

extended to a Hydrodynamic Rainfall-Runoff Model.  

2.1.2.2 Hydrological model WRF-Hydro (NWM) 

The NWM is a hydrologic modelling framework that simulates observed and forecast 

streamflow over the entire continental United States. The NWM simulates the water cycle 
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with mathematical representations of the different processes and how they fit together. 

This complex representation of physical processes such as snowmelt, infiltration and 

movement of water through the soil layers varies significantly with changing elevations, 

soils, vegetation types and a host of other variables. Overall, NWM provide a relatively 

reasonable production of streamflow currently. The current NWM framework was 

established based on the Weather Research and Forecasting Model Hydrological 

modeling extension package (WRF-Hydro). 

WRF-Hydro is a physics-based distributed hydrological model with a representation of 

groundwater flow processes (Gochis et al., 2015). Three main components are used in the 

WRF-hydro system: column land surface models, terrain routing modules, and channel 

and reservoir routing modules (Figure 2.2). First, the one-dimensional Noah land surface 

column model or Noah land surface model with multi-parameterization options (Niu et 

al., 2011) driven by atmospheric forcing data, calculates soil states and fluxes, including 

soil moisture, evapotranspiration, and vertical water motion (such as infiltration and 

exfiltration). Atmospheric forcing includes rain rate, shortwave, and longwave radiations, 

surface pressure, near-surface wind, specific humidity, and temperature. Second, the 

distributed terrain routing module uses output from the land surface model to calculates 

variables related to overland flow and subsurface flow, including stream inflow (lateral 

inflow), surface water depth, groundwater depth, and soil moisture. Two-way coupling is 

used to communicate between the land surface model and terrain routing modules. 

Finally, channel & reservoir routing modules calculate streamflow, flow velocity, and 
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other variables. One-way coupling is used to communicate from terrain routing to 

channel reservoir routing.  

 

Figure 2.2. Three components of WRF-Hydro. Column land surface models (left), Terrain 

routing Modules (middle), Channel and reservoir routing modules (right). Two-way 

coupling is used between column land surface models and terrain routing modules while 

one-way coupling is used between terrain routing modules and channel & reservoir 

routing modules.  

The Saint-Venant Equation, a one-dimensional simplified Navier-Stokes equation is used 

to govern overland routing and river channel routing as grided routing. The equation is as 

follows: 

𝜕𝐴

𝜕𝑡
+

𝜕𝑄

𝜕𝑥
= 0 (2.10) 

𝜕𝑄

𝜕𝑡
+

𝜕(𝑄2/𝐴)

𝜕𝑥
+ gA

𝜕𝐻

𝜕𝑥
+ gA𝑆𝑓 = 0 (2.11) 

where 𝑥 is distance, 𝑡 is time, 𝐴 is flow cross-sectional area, 𝑄 is flow rate, 𝑆𝑓 is friction 

slope, g is acceleration of gravity, and 𝐻 is hydraulic head of water in the conduit. 𝐻 =
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𝑍 + 𝑌, where 𝑍 is conduit invert elevation, and 𝑌 is conduit water depth. The first two 

terms of Eq. 2.11 are ignored in WRF-Hydro, which makes the calculation as simple as 

calculating diffusive waves.  

In the NWM, the Muskingum-Cunge method is applied to represent river channel routing 

as linked routing across the continental United States. WRF-Hydro utilizes a standard 

implementation of the Muskingum-Cunge method for hydrograph routing, which makes 

use of time-varying parameter estimates. The scheme is a practical approach to 

characterizing watershed runoff characteristics over large networks and extensive 

watershed flow integration. As a one-dimensional explicit scheme, it does not account for 

backwater. Channel flows are routed from upstream to downstream in a cascading 

routing manner, with the assumption that there are negligible backwater effects. The "no 

backflow" assumption may not always be appropriate, particularly for coastal regions.  

Additionally, a conceptual baseflow (groundwater flow) model, usually named “bucket 

model,” is employed in WRF-Hydro. In this model, groundwater flow is a function of water 

depth in the “bucket” at each subbasin, which represents the water storage capacity of 

the subbasin. Due to limited knowledge, groundwater flow in the hydrological model is 

often treated as a black box. However, it is a crucial component that significantly 

contributes to river channel routing and cannot be ignored. Therefore, accurately 

estimating the parameter related to this bucket model is essential for obtaining reliable 

discharge outputs.  
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2.1.2.3 Ocean model ROMS 

ROMS is a free-surface, terrain-following, primitive equations ocean model widely used 

by the scientific community for a diverse range of applications. In the vertical, the 

primitive equations are discretized over variable topography using stretched terrain-

following coordinates. The stretched coordinates allow increased resolution in areas of 

interest, such as thermocline and bottom boundary layers. In the horizontal, the primitive 

equations are evaluated using boundary-fitted, orthogonal curvilinear coordinates on a 

staggered Arakawa C-grid.  

2.1.3 Study Area 

The Northeastern coast of South Carolina was selected as the study domain in my thesis 

(Figure 2.3). Three rivers enter this region and eventually reach the adjacent Atlantic 

Ocean. The area belongs to the coastal plain of South Carolina (as mentioned in Section 

1.3.4) and is affected by hurricanes and storms from the North Atlantic Ocean almost 

every year during the early autumn. 

Two USGS stations (id: 02145200 and 02110704) provided discharge as TELEMAC-2D 

model input. To validate the model, water level from five USGS stations (id: 02110815, 

021108125, 02110802, 02110725, and 02110777) and one NOAA station (id:8661070) in 

the domain were utilized. 
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Figure 2.3. The domain of simulation. Three rivers (the Waccamaw, Pee Dee, and Black) 

enter this region and flow into the Atlantic Ocean at Winyah Bay. Two USGS stations (id: 

02145200 and 02110704) provided discharge as TELEMAC-2D model input. There are 

five USGS stations (id: 02110815, 021108125, 02110802, 02110725, and 02110777) 

and one NOAA station (id:8661070) in this area that can be used for water level 

validation. Negative topography indicates the bathymetry of river channels and coastal 

oceans. The path of Hurricane Matthew is shown in the inset figure. Five cross sections 

(aa’ to ee’) were selected to check the river discharges. The bathymetries of these five 

cross sections are shown in the right panels.   
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2.1.4 Model validation 

 

Figure 2.4. Model inputs for 2016 Hurricane Matthew event: Time series of river 

discharge from Waccamaw (purple line), PeeDee (red line), and Black Rivers (green 

line), sea level at seaside (solid blue line), storm surge (dashed blue line), tide (dotted 

blue line), and domain averaged rainfall (cyan line). The discharge input (dashed red, 

purple, and green lines) before Oct 08 shows a decreasing trend. A slight adjustment was 

made by removing the decreasing trend from the discharge input (solid red, purple, and 

green lines). This made the compound effect caused by the interaction between 

discharge, tide, and surge more straightforward to assess.   

Hurricane Matthew, which occurred in 2016, was selected as the primary case for model 

validation. Hurricane Matthew was an extremely powerful hurricane that made landfall 

in South Carolina on October 8th, 2016 and caused widespread damage to the 

southeastern US. The combination of storm surge inundation and inland flooding left 
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more than 1 million structures damaged and cost approximately 10.3 billion US dollars. 

USGS recorded 112 high-water marks at flooded locations in the study area during and 

after Hurricane Matthew. To validate the inundation model, I assessed its performance in 

two aspects: flood extent and water level/depth, utilizing data from both USGS and NOAA 

stations in the area.  

Figure 2.4 shows the characteristics of the input data to TELEMAC-2D for the 2016 

Hurricane Matthew event. The storm rainfall in the study area began after October 7th, 

2016 and peaked around October 08, 2016, exceeding the 10% annual chance rainfall, as 

estimated from the Stage IV history data. On October 9th, 2016, the abnormal sea level 

rise was observed due to the storm surge, which occurred slightly later than the storm 

rainfall. It is noteworthy that the storm surge coincided with the neap tide. The spring 

tide arrived around October 18th, 2016, and dominated the sea level change 

immediately. With regard to the upstream discharge, the peaks from the three rivers 

arrived about two days later compared to the storm surge and rainfall, with significant 

differences in their magnitudes. The PeeDee River had a much higher upstream discharge, 

exceeding 3500 m3/s, which is near a magnitude of 5% of the annual chance discharge 

based on estimates from the USGS long term observation. The Waccamaw River had 

relatively smaller peak discharge than the PeeDee River, but still reached the level of 

discharge of 5% of the annual chance. The large upstream discharges were reasonable 

given that most of the storm rainfall over the period October 4th to October 25th, 2016, 

fell onto the PeeDee and Waccamaw River basins (Figure 2.4). In contrast, upstream 

discharge from the Black River was relatively small, falling between the magnitudes of its 
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discharge of with 10% and 5% of annual chances. The discharge input before October 8th 

showed a decreasing trend, which introduced uncertainty in calculating the compound 

effect in the discussion section. To fix the issue, a slight adjustment was made by 

removing the decreasing trend from the discharge input. As a result, the compound effect 

caused by the interaction between discharge, tide, and surge was more straightforward 

to assess. To clarify, the model runs without any modification to the discharge inputs were 

used for validation purposes (Section 2.1.4), whereas the subsequent model runs with 

modified discharge inputs were used to examine the individual and combined effects of 

various natural factors (Section 3.1). 

2.1.4.1 Flood extend validation 

Figure 2.5 shows the results of the model validation with high water marks (HWM) for the 

flooded areas. During and after the storm, USGS recorded 112 HWMs at flooded locations 

in the study area. However, due to the 100-meter spacing of the computation grid and 

the 0.01-meter water depth threshold used for extracting water surface, there were some 

bias in the location of the HWMs compared to the water surface area produced by the 

coupled model. To validate the flooding area, we applied a wider range of HWM locations. 

This involved considering cells within one or two cell distances of the HWMs. A '1 cell 

range' ('2 cell range') means considering cells near a HWM within one (two) cell distance. 

If at least one nearby cell was wet, we considered the HWM to be simulated. With the '1 

cell range' applied, the model was able to simulate all but four of the HWMs, resulting in 

an accuracy of 96.4%. With a '2 cell range' applied, all HWMs except one of the HWMs 

were simulated as flooded by TELEMAC-2D during the study period, yielding an accuracy 
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of 99.1%. 

 

Figure 2.5. Model validation for water level and flooding area: Time series of  sea level 

result from TELEMAC-2D (blue) and sea level observation from USGS and NOAA stations 

(lines). During and after Hurricane Matthew, the observed high-water marked locations 

compared with the model-simulated flooded areas were shown in the map. The light 

blue color represents the accumulated water surfaces during the simulation period, 

including both the flooded area and the permanent water surface. The USGS recorded 

high-water mark locations are indicated by dots with different meanings: green dots 

represent a simulated observation within 0 cell range, yellow dots represent a simulated 

observation within 1 cell range, orange dots represent a simulated observation within 

2 cell range, and red dots represent locations that were not simulated.   
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2.1.4.2 Water level/depth validation 

Figure 2.5 also shows the model validation with USGS and NOAA stations for the water 

level. The coupled model result was found to fit relatively well with the USGS and NOAA 

observations. The root mean square errors (RMSEs) were 0.23m, 0.18m, 0.24m, 0.29m, 

and 0.51m for the five USGS stations. However, the NOAA verified water level 

observations were missing from October 8th, 2016 to December 15th 2016, possibly due 

to storm damage. Hence, we only compared the water level data from October 4th, 2015, 

to October 8th, 2015. The TELEMAC-2D simulated water level agreed well with the NOAA 

observations, with an RMSE of only approximately 0.08m. 

 

Figure 2.6. High Water Mark (HWM) example from USGS website 

(https://www.usgs.gov/special-topics/water-science-school/science/high-water-

marks-and-flooding, accessible in March 2023). a) Line of dried mud on poison ivy; b) 

High-water mark from the October 2015 flooding in Columbia, South Carolina. 

 

For the water depth validation with HWMs, the validation process is slightly more 

complicated. HWMs (Figure 2.6) provide physical evidence of the water level that 

occurred during a flood event. They are typically left by debris, stains, or damage caused 

https://www.usgs.gov/special-topics/water-science-school/science/high-water-marks-and-flooding
https://www.usgs.gov/special-topics/water-science-school/science/high-water-marks-and-flooding
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by the floodwaters. USGS conducts post-flood field investigations to document these 

HWMs in order to provide valuable information for floodplain mapping, calibrating flood 

models, and understanding the impacts of flooding. Two key features of HWMs are 

important for water depth validation:  

1) The HWM is the minimum value of the maximum water level in one region during 

a flood event. The actual water level could be higher. 

2) The time of flagging and surveying the HWMs is not the time when the HWMs 

were formed, as the HWM formation time may have occurred earlier. 

Thus, to validate water depth with HWMs, the process was as follows: First, search for 

water depth within a 1 cell range before the HWM survey date. Then, find the highest 

water depth for each cell. Finally, use the cell where the highest water depth is closest to 

the "height above ground" provided by the HWM to validate water depth. The water 

depth validation with HWMs is shown in Figure 2.7, which indicates a relatively strong 

positive correlation between the coupled model result and HWM observations, with a 

correlation coefficient of 0.38. By excluding two abnormal model outputs, the correlation 

coefficient increases to 0.88. 
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Figure 2.7. Water depth validation with HWMs.  

2.1.5 Experimental design  

2.1.5.1 Coastal compound flood analysis 

To analyze the contributions of four natural factors - upstream discharge, local rainfall, 

tides, and storm surge - to coastal flooding, we designed a series of model simulations 

with different input settings (Table 2.1). We selected the flood event triggered by 

Hurricane Matthew in 2016 as our case study and used the same model inputs as those 

utilized for the TELEMAC-2D validation section (Figure 2.4), with one exception that the 

initial decrease in upstream discharge prior to its peak was modified to a constant value. 

This modification was crucial to reduce uncertainty in the compound effect analysis and 

to make the compound effect clearer. 
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Table 2.1 Experimental design for testing the contribution of river discharge, rainfall, 

and sea level to coastal flooding. 

EXP 
Upstream 

discharge 

Local 

Rainfall 

Sea level    

Tide Surge Note 

1 X X X X Control 

2 O O O O Reference 

3 X O O O 
Impact of 

individual   

factors 

4 O X O O 

5 O O X O 

6 O O O X 

7 X X O O 

Impact of 2 

factors 

8 X O X O 

9 X O O X 

10 O X X O 

11 O X O X 

12 O O X X 

13 O X X X 

Impact of 3 

factors 

14 X O X X 

15 X X O X 

16 X X X O 

 

Here were the steps to set up the model simulations (Table 2.1). Firstly, we ran a control 

simulation (EXP1) using the upstream discharge, local rainfall, tides, and storm surge 

observed during Hurricane Matthew. A five-day simulation was used as a spin-up period 

to establish a relatively steady initial condition, which was also applied to the rest of the 

model runs. The discharge inputs for the spin-up and at the beginning of EXP1 were 

constant. Subsequently, a reference simulation (EXP2) was run using constant discharge 

identical to the spin-up, zero rainfall and a constant sea level, indicating no tide or storm 

surge. The water surface from this idealized steady scenario (EXP2) was then be used as 

the permanent water surface, and the differences in water surface area between other 

experiments and the reference simulation were used to calculate the flooding area. 
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Then three groups of experiments were performed to test the individual effect of each 

factor and the compound effects of two or three factors. Simulations from EXP3 to EXP6 

examined the impacts of single factors including upstream discharge, local rainfall, tide, 

and storm surge, respectively. EXP7 to EXP12 assessed the impacts of two factors in 

various combinations, while EXP13 to EXP16 investigated the impacts of three factors in 

various combinations.   

2.1.5.2 Flood risk sensitivity test 

The flood risk sensitivity test examines the sensitivity of flood risk to changes caused by 

different factors. The analysis of coastal compound flooding (elaborated in the discussion 

section) revealed that coastal flooding occurrence is heavily dependent on the magnitude 

and timing of peak upstream discharge and peak storm surge. Therefore, the flood risk 

sensitivity test is designed to evaluate how extreme upstream discharge and storm surge 

influence coastal flood inundation. Additionally, long-term sea level rise, population and 

GDP per capita which were used to calculate flood risk as defined in Section 2.1.1, are also 

considered in this sensitivity test. However, to conduct the sensitivity test, several 

problems need to be solved. 

The first problem is how to compare different factors with different units. For example, 

river discharge values range from hundreds to thousands of cubic meters per second, 

while sea level change values, including storm surge and long-term sea level rise, are only 

within a few meters. By designing sensitivity with actual numbers, the result will be hard 

to reflect the reality. In order to make the comparison more meaningful, the annual 

chance, generally known as the return period, was utilized in my thesis. Extreme value 
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estimation was applied to obtain the extreme upstream discharge and extreme storm 

surge with certain annual chances, including 1% (1-in-100 years), 2% (1-in-50 years), 5% 

(1-in-20 years), and 10% (1-in-10 years).  

The second problem is how to modify the discharge and storm surge with extreme value 

estimates. Based on the coastal compound flooding analysis (detailed in the discussion 

section), the timing of different factors is critical in producing coastal compound flooding. 

Multiplying the time series data by the extreme values is not appropriate due to the bias 

introduced by large values occurring at an early stage. For example, with upstream 

discharge, simple multiplication might cause a relatively large discharge to occur before 

the peak discharge comes. This relatively large discharge could interact with topography 

settings before the real discharge peaks, adding complexity to the result analysis. 

Therefore, a curve fitting method is used to obtain a formula to represent the time series 

discharge and storm surge, making the analysis of coastal flood risk more straightforward.  

The last problem is about interpreting the physical meaning of each factor in the 

sensitivity test comparison. Upstream discharge and storm surge are addressed with 

different annual chances, while long-term sea level rise values correspond to potential 

sea level rise at the end of the 21st century with different RCP projections. For population 

growth and GDP increase, the yearly change rate represent the change. The detailed 

factors in this sensitivity test include: 

1) Upstream discharge magnitude with a certain annual chance. 

2) Storm surge height with a certain annual chance. 

3) Sea level rise prediction by the end of this century with different RCPs projection. 
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4) Annual population growth rates. 

5) Annual GDP increase rates. 

My thesis aims to fairly compare the roles of the above five factors, avoiding bias due to 

their different physical meanings. As all these factors are related to a year, the 

comparison would be more meaningful and valuable. 

2.1.5.2.1 Upstream discharge simplification 

Figure 2.4 shows the model inputs for Hurricane Matthew in 2016. The Waccamaw River 

and the Pee Dee River inlets data is from USGS gauge stations, while the Black River inlet 

data is from NWM reanalysis dataset. Examining the upstream discharge patterns for the 

three river inlets during the hurricane, it reveals that the discharge remained at a 

relatively steady level before the hurricane. However, it increased rapidly to the peak 

value and then gradually decreased. Since the shape of these lines resembles an 

exponential function, the upstream discharge time series was defined as follows: 

𝐷𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒 = 𝑀𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒 × 𝑒
(
−(log 𝑋−μ)2

2∙𝜎2 )
+ 𝐵𝑎𝑠𝑒𝑓𝑙𝑜𝑤 (2.12) 

where 𝑋  is the time step number (starting from 1) with a one-hour time interval, μ 

represents the location parameter, and 𝜎 represents the scale parameter. Magnitude is 

defined as the peak discharge value during a single flood event, while baseflow refers to 

the steady flow before a flood event. Baseflow remains fixed for the three rivers. The 

parameters μ and 𝜎 were used for curve fitting, and by changing the magnitude to the 

peak discharge with a certain annual chance, specific extreme discharge lines with a 

certain annual chance can be obtained. 

The calculated fitting parameters for three river inlets are in Table 2.2: 
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Table 2.2 Fitting parameters for discharge simplification of three river inlets 

 μ 𝜎 𝐵𝑎𝑠𝑒𝑓𝑙𝑜𝑤(𝑚3 𝑠⁄ ) 

Waccamaw River 5.11 0.85 50 

Pee Dee River 5.22 -0.54 100 

Black River 4.11 0.89 70 

 

With these fitter parameters, the formulas for three river discharge time series are as 

follows: Waccamaw River (equation 2.13), Pee Dee River (equation 2.14), and Black River 

(equation 2.15). 

𝐷𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒 = 𝑀𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒 × 𝑒
(
−(log 𝑋−5.11)2

2∙0.852 )
+ 50 𝑚3 𝑠⁄  

(2.13) 

𝐷𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒 = 𝑀𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒 × 𝑒
(
−(log 𝑋−5.22)2

2∙0.542 )
+ 100 𝑚3 𝑠⁄  

(2.14) 

𝐷𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒 = 𝑀𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒 × 𝑒
(
−(log 𝑋−4.11)2

2∙0.892 )
+ 70 𝑚3 𝑠⁄  

(2.15) 

2.1.5.2.2 Storm surge simplification 

As a kind of wave, storm surge was defined as: 

𝑆𝑢𝑟𝑔𝑒 = 𝑀𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒 × 𝑠𝑖𝑛 (2πX/𝑃𝑒𝑟𝑖𝑜𝑑) (2.16) 

where 𝑋 is the time step number, starting from 1 with a one-hour time interval. The 

magnitude is defined as the peak water level value during a single flood event, while the 

period refers to the duration of the storm surge in Hurricane Matthew, which is about 80 

hours. Then, the equation 2.16 were rewritten as: 

𝑆𝑢𝑟𝑔𝑒 = 𝑀𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒 × 𝑠𝑖𝑛 (
𝑋

11.5 hr
) (2.17) 
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2.1.5.2.3 Extreme value estimation 

The Generalized Extreme Value (GEV) distribution method is often used in hydrology and 

climatology to model the distribution of extreme events. For example, it can be used to 

estimate the return period of floods or droughts, which is the expected time intervals 

between events of a given magnitude. In my thesis, GEV was used to estimate extreme 

values for upstream discharge and storm surge height. The GEV distribution is 

characterized by three parameters: location parameter (μ), scale parameter (𝜎 ), and 

shape parameter (ξ). The probability density function (PDF) of the GEV distribution can be 

expressed as: 

𝑓(𝑌, 𝜇, 𝜎, 𝜉) =
1

𝜎
[(1 + ξ (

Y − 𝜇

𝜎
))

−1

−
1

ξ
] 𝑒−(1+ξ(

Y−𝜇
𝜎

))
−

1
ξ
    (2.18) 

where 𝑌 represents a random variable, such as flood magnitude. The location parameter 

(𝜇) determines the peak of the distribution, while the scale parameter (𝜎) determines 

the spread of the distribution. Lastly, the shape parameter (ξ) defines the shape of the 

distribution.  

The length of data used for extreme value estimation is critical. The record for PeeDee 

River inlet (USGS station 02135200) spans only 22 years, from 2001 to the present. The 

Waccamaw River record (USGS station 02110704) covers approximately 29 years, dating 

from 1994 to the present. There is no data for Black River inlet. By incorporating NWM 

reanalysis dataset, the data length extends to 44 years, from 1979 to the present. The sea 

level record form NOAA (id: 8661070) station is from 1979 to the present. Due to data 

gaps, especially for large surges caused by extreme weather conditions, extreme value 
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estimations for storm surge may be underestimated. Figures 2.8, 2.9, 2.10, and 2.11 are 

the results of extreme value estimation. 𝜇, 𝜎, and 𝜉 for the three river inlets and storm 

surge are provided in Table 2.3. 

Table 2.3 Fitting parameters for extreme value estimation of three river inlets and storm 

surge height 

 𝜇 𝜎 𝜉 

Waccamaw River -0.53 148.36 89.26 

Pee Dee River -0.10 1125.52 642.75 

Black River -0.54 231.77 124.86 

Storm Surge -0.07 1.58 0.13 

 

 

Figure 2.8. Extreme value estimation for Waccamaw River inlet. Data is from NWM and 

USGS station 02110704 covering a period from 1979 to 2022.  
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Figure 2.9. Extreme value estimation for Pee Dee River inlet. Data ranges from 1979 to 

2022. Data is from NWM and USGS station 02135200. 

 

Figure 2.10. Extreme value estimation for Black River inlet. Data ranges from 1979 to 

2020. Data is from NWM. 
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Figure 2.11. Extreme value estimation for storm surge. Data ranges from 1979 to 2022. 

Data are from NOAA station 8661070. 

The term “return period” can be misleading when describing the frequency of flood 

events. For instance, a 1-in-100 year flood is often considered as a general indicator for 

flood magnitude. However, rather than happening just once in a 100-year span, a 1-in-

100 year flood actually signifies a 1% chance of occurrence in any given year. Based on 

this calculation, a 1-in-100 year flood has only a 36.97% (Eq. 2.19) chance of occurring 

once or a 63.40% (Eq. 2.20) chance of occurring at least once in a 100-year period. For 

clarification, the phrase "annual chance” is used instead to describe the magnitude of a 

flood throughout the rest of my thesis.  

𝑃(𝑋 = 1) = (
100

1
) × 0.011 × 0.9999 ≈ 0.3697    (2.19) 

𝑃(𝑋 = 1,2,3 … 98,99,100) = 1 − 0.99100 ≈ 0.6340    (2.20) 
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Figure 2.12. Extreme value estimation was applied to upstream discharge and storm 

surge (surge + tide) data by using observational data, including USGS observation for 

Waccamaw (a) and Pee Dee (b) Rivers, NWM reanalysis data for Black (c) River, and 

NOAA observation for storm surge (d), which were used for curve fitting. The black lines 

in the graphs represent the observational data, while the red lines show the fitting 

results. The magnitude equations (2.13-2.15,2.17) were modified with specific values 

related to specific annual chance to create time series of upstream discharge and storm 

surge. These time series data were used for sensitivity tests. The X axis, representing time 

step, is different for upstream discharge and storm surge. To ensure consistency in the 

sensitivity tests, additional modifications were made to align the peaks of each 

upstream discharge and storm surge.  

The estimated extreme values mentioned above are used to set the magnitude in 

simplified river discharge and storm surge time series data. In this sensitivity test, only 

1%, 2%, 5%, and 10% annual chances, which represent extreme events, upstream 

discharge and storm surge were used. Figure 2.12 shows the result of applying extreme 

value estimated to upstream discharge and storm surge simplified formulas.  
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2.1.5.2.4 Sensitivity test design  

The primary objective of the sensitivity test is to examine how sensitive the flood risk 

related to the change in upstream discharge, storm surge, long term sea level rise, 

population growth, and GDP increase is. The testing process involves the following steps: 

1) Set up model runs with different upstream discharge, downstream water 

levels (including storm surge and long term sea level rise). As summarized in 

Table 2.4, in total, 64 model runs are simulated. 

Table 2.4 Sensitivity test design for upstream discharge, storm surge, and long-term sea 

level rise comparison. 

 
Upstream 
Discharge 

Storm Surge Sea level Rise 

Sen_EXP001 1% 1% 0m 

Sen_EXP002 1% 1% 0.43m 

Sen_EXP003 1% 1% 0.55m 

Sen_EXP004 1% 1% 0.84m 

Sen_EXP005 1% 2% 0m 

Sen_EXP006 1% 2% 0.43m 

Sen_EXP007 1% 2% 0.55m 

Sen_EXP008 1% 2% 0.84m 

Sen_EXP009 1% 5% 0m 

Sen_EXP010 1% 5% 0.43m 

Sen_EXP011 1% 5% 0.55m 

Sen_EXP012 1% 5% 0.84m 

Sen_EXP013 1% 10% 0m 

Sen_EXP014 1% 10% 0.43m 

Sen_EXP015 1% 10% 0.55m 

Sen_EXP016 1% 10% 0.84m 

Sen_EXP017 2% 1% 0m 

Sen_EXP018 2% 1% 0.43m 

Sen_EXP019 2% 1% 0.55m 

Sen_EXP020 2% 1% 0.84m 

Sen_EXP021 2% 2% 0m 

Sen_EXP022 2% 2% 0.43m 

Sen_EXP023 2% 2% 0.55m 



 59 

Sen_EXP024 2% 2% 0.84m 

Sen_EXP025 2% 5% 0m 

Sen_EXP026 2% 5% 0.43m 

Sen_EXP027 2% 5% 0.55m 

Sen_EXP028 2% 5% 0.84m 

Sen_EXP029 2% 10% 0m 

Sen_EXP030 2% 10% 0.43m 

Sen_EXP031 2% 10% 0.55m 

Sen_EXP032 2% 10% 0.84m 

Sen_EXP033 5% 1% 0m 

Sen_EXP034 5% 1% 0.43m 

Sen_EXP035 5% 1% 0.55m 

Sen_EXP036 5% 1% 0.84m 

Sen_EXP037 5% 2% 0m 

Sen_EXP038 5% 2% 0.43m 

Sen_EXP039 5% 2% 0.55m 

Sen_EXP040 5% 2% 0.84m 

Sen_EXP041 5% 5% 0m 

Sen_EXP042 5% 5% 0.43m 

Sen_EXP043 5% 5% 0.55m 

Sen_EXP044 5% 5% 0.84m 

Sen_EXP045 5% 10% 0m 

Sen_EXP046 5% 10% 0.43m 

Sen_EXP047 5% 10% 0.55m 

Sen_EXP048 5% 10% 0.84m 

Sen_EXP049 10% 1% 0m 

Sen_EXP050 10% 1% 0.43m 

Sen_EXP051 10% 1% 0.55m 

Sen_EXP052 10% 1% 0.84m 

Sen_EXP053 10% 2% 0m 

Sen_EXP054 10% 2% 0.43m 

Sen_EXP055 10% 2% 0.55m 

Sen_EXP056 10% 2% 0.84m 

Sen_EXP057 10% 5% 0m 

Sen_EXP058 10% 5% 0.43m 

Sen_EXP059 10% 5% 0.55m 

Sen_EXP060 10% 5% 0.84m 

Sen_EXP061 10% 10% 0m 

Sen_EXP062 10% 10% 0.43m 

Sen_EXP063 10% 10% 0.55m 

Sen_EXP064 10% 10% 0.84m 

2) Combine the flooding area grid with the population density grid by 
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multiplication. Then, further multiply by the GDP per capita to obtain the flood 

risk grid. The sum of this grid represents the flood risk as defined in section 

2.1.1. 

3) Finally, a five-dimensional matrix of flood risk (including discharge, surge, SLR, 

population, and GDP per capita) is calculated. By the comparison of change 

rate along each dimension, the sensitivity of flood risk to each considered 

factor can be determined. The sensitivity indicates the extent to which flood 

risk is affected by upstream discharge increase, storm surge height increase, 

sea level rise, population growth, and GDP growth. 

 2.1.5.3 Historical flood event study 

To evaluate the contributions of inland river systems (represented by upstream 

discharge) and coastal processes (represented by storm surge and tide) to coastal 

flooding, we conducted a series of model simulations for historical coastal flood events 

that occurred between 2000 to 2020 (Table 2.5). For each flood event, we designed seven 

simulations to assess the contributions of upstream discharge, storm surge, and tide to 

coastal flood risk. These seven simulations included upstream discharge only, storm surge 

only, tide only, upstream discharge + storm surge, upstream discharge + tide, storm surge 

+ tide, and upstream discharge + storm surge + tide (Table 2.6). 

Table 2.5. Coastal flood events happened in northeastern South Carolina (2000 to 2020). 

Event Name Simulation Start Simulation End Near Landing Date 

KYLE 2002-10-06 2002-11-11 2002-10-11 

GASTON&IVAN 2004-08-24 2004-10-02 
2004-08-29 & 

2004-09-17 

HANNA 2008-09-01 2008-10-05 2008-09-06 

MATTHEW 2016-10-03 2016-11-06 2016-10-08 

FLORENCE&MICHAEL 2018-09-09 2018-11-10 2018-09-14 

DORIAN 2019-08-31 2019-09-20 2019-09-05 

BERTHA 2020-05-22 2020-06-25 2020-05-27 
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Table 2.6. Experiments design for each historical flood events 

EXP Upstream discharge 
Sea level  

Tide Surge 

discharge only X O O 

tide only O X O 

storm surge only O O X 

upstream discharge + 
tide 

X X O 

upstream discharge + 
storm surge 

X O X 

storm surge + tide O X X 

upstream discharge + 
storm surge + tide 

X X X 

 

2.2 Data 

The quality of input data serves as the foundation for any modeling process. The 

availability of input data determines whether a modeling process is feasible. Moreover, 

the spatial and temporal resolution of input data determines the phenomena that can be 

addressed and analyzed through model results. The accuracy of input data also impacts 

the validity of model results. This section delves into the data used in my thesis for 

modeling. However, it is important to acknowledge that the scope of the results and 

discussions presented is limited by the constraints of the input data. 

2.2.1 Topography  

The topography and bathymetry data for my thesis were obtained from the Continuously 

Updated Digital Elevation Model (CUDEM) from National Centers for Environment 

Information (NCEI), which was developed to improve inundation modeling and mapping, 

among other purposes. With a resolution of a ninth arc-second (approximately 3 meters), 

it provides the most accurate topography and bathymetry available for the study area. 
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The spatial resolution of TELEMAC-2D computation grid used in my thesis is about 100m. 

We used the GIS techniques to convert CUDEM to a Triangular Irregular Network (TIN) in 

order to preserve more detailed topography information with fewer points. Then, the 

nodes of the TIN were used to interpolate the TELEMAC-2D computation grid. Through 

this pre-processing, the high resolution topography input improves the accuracy of 

TELEMAC-2D modeling, even though the model computation gird is much larger than the 

topography input,.  

2.2.2 Atmospheric forcing  

Rainfall data used in this study is from National Stage IV Quantitative Rainfall Estimates 

Product (Stage IV). The data is derived from regional hourly or six-hourly multi-sensor 

(e.g., radar and rain gauges) rainfall analyses, produced operationally by the twelve River 

Forecast Centers across the continental U.S. at National Centers for Environmental 

Prediction (Y. Lin, 2011). A domain-averaged rainfall from Stage IV was used as model 

input for TELEMAC-2D. 

2.2.3 Land use/cover 

The land use/cover data (Figure 2.13) used in this study was from the Multi-Resolution 

Land Characteristics (MRLC), a consortium of federal agencies that collaborate to 

generate consistent and relevant nationwide land use/cover data for various 

environmental, land management, and modeling applications. From decadal Landsat 

satellite imagery and other supplementary datasets, this consortium has produced the 

National Land Cover Database (NLCD), which is a comprehensive product of nationwide 

land cover and land cover change at a 30m resolution with a 16-class legend based on a 
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modified Anderson Level II classification system (Homer et al., 2020). Since 2001, the 

dataset has been updated seven times in 2001, 2004, 2006, 2008, 2011, 2013, and 2016. 

Figure 2.14 shows the land cover data as of 2016 the northeast coast of South Carolina. 

Since 2001, the areas covered by forest, wetland, and shrub land have decreased by more 

than 3%, while urban areas have increased by about 4% (Figure 2.14).  

 

Figure 2.13. Land cover data for TELEMAC-2D domain (2016). Developed land, forest, 

shrubland, and wetland are four major land use/cover types in this region. 
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Figure 2.14. Land use/cover change of TELEMAC-2D domain since 2001.  Developed 

areas increased by about 4%. 

2.2.4 Population density 

The population data used in my thesis is from the Gridded Population of the World (GPW) 

dataset version 4 provided by the Center for International Earth Science Information 

Network of Columbia University. GPW models the continuous distribution of human 

population (number and densities) on a grid of 30 arc-seconds (approximately 1 km at the 

equator). The input population in this dataset was collected based on the most detailed 

spatial resolution available from the 2010 Population and Housing Censuses, which took 

place between 2005 and 2014 (Center For International Earth Science Information 

Network-CIESIN-Columbia University, 2018). The input data are extrapolated to produce 

population estimates for the years 2000, 2005, 2010, 2015, and 2020 (Figure 2.15, 2.16). 

The dataset also provides a set of estimates adjusted for national-level population 



 65 

predictions based on the United Nations’ World Population Prospects report for the same 

years. These data is used as gridded population density for flood risk calculation using Eq. 

2.1. A spatial interpolation method was used to interpolate the population.  

 

Figure 2.15. Population Density from the Gridded Population of the World (GPW) 

dataset version, 4: a)2000 population density distribution, b)2005 population density 

distribution, c)2010 population density distribution, d)2015 population density 

distribution, e)2020 population density distribution.  Spatial resolution is 100 meters. 
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Figure 2.16. Population growth in study area since 2000. 

2.2.5 GDP per capita 

 

Figure 2.17. US GDP per capita in current US$ and 2020 US$ 

GDP per capita used in this study is from World Bank (Figure 2.17). In order to compare 

the flood risk without the influence of inflation, the unit of GDP per capita is unified to 

constant 2020 U. S. dollar. The transformation method is as follows: 

𝐺𝐷𝑃2020 = 𝑁𝑜𝑚𝑖𝑛𝑎𝑙 𝐺𝐷𝑃 ×
𝐺𝐷𝑃 𝑑𝑒𝑓𝑙𝑎𝑡𝑜𝑟2020

𝐺𝐷𝑃 𝑑𝑒𝑓𝑙𝑎𝑡𝑜𝑟
 (2.21) 
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where 𝑁𝑜𝑚𝑖𝑛𝑎𝑙 𝐺𝐷𝑃  represents the value of the economy’s output calculated using 

every individual year’s prices and 𝐺𝐷𝑃2020 measures the value of the economy’s output 

adjusted for price changes (inflation or deflation) with 2020 as the base year. 

𝐺𝐷𝑃 𝑑𝑒𝑓𝑙𝑎𝑡𝑜𝑟 is a measure of price inflation/deflation with respect to a specific base 

year. GDP deflators used in this study are also from World Bank. 

 
Table 2.7. US GDP per capita and SC GDP per capita 

 US GDP per capita 
(current US$) 

GDP deflator 
US GDP per capita 

(2020 US$) 

2000 36334.91 68.74 52854.63 

2001 37133.24 70.25 52856.56 

2002 38023.16 71.36 53280.53 

2003 39496.49 72.69 54335.97 

2004 41712.80 74.65 55880.57 

2005 44114.75 76.97 57313.07 

2006 46298.73 79.30 58383.66 

2007 47975.97 81.43 58916.04 

2008 48382.56 83.02 58281.69 

2009 47099.98 83.65 56307.43 

2010 48466.66 84.62 57273.89 

2011 49882.56 86.39 57740.93 

2012 51602.93 88.05 58608.31 

2013 53106.54 89.59 59275.80 

2014 55049.99 91.25 60329.03 

2015 56863.37 92.12 61728.33 

2016 58021.40 93.09 62331.43 

2017 60109.66 94.84 63383.16 

2018 63064.42 97.11 64939.64 

2019 65279.53 98.85 66041.68 

2020 63413.51 100.00 63413.51 

 Data source: World Bank 
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3 Results and discussion

In the previous flood studies, the discharge in the river channel was the key variable used 

to estimate the severity of a flood. This common understanding in the flood research field 

guided the development of hydrological models. However, in reality, flooding is not a one-

dimensional issue, especially for coastal floods. Compared to the extreme values 

appearing in the discharge time series, the spatial and temporal distribution of the 

flooded area is more effective in reflecting the severity of a coastal flood. In my thesis, 

several improvements have been made by adopting a more comprehensive approach to 

understanding the complexity of coastal floods. These improvements include:  

The main variable used for analysis was the flooding area, defined as the difference in 

water surface area between each model simulation and the reference run (EXP2). To 

better understand the dynamics of the flooding process, the real-time flooding area and 

the accumulated flooding area were analyzed separately.  

1) Calculate total wave volume every hour to gain insights into how much water 

remained in the study domain. 

2) Integrate discharges along 12 selected cross sections to analyze the spatial and 

temporal changes of water flows in the study domain.  

These improvements help to provide a more accurate and comprehensive understanding 

of coastal floods, which could assist in the development of hydrological models and 
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improve the prediction of coastal floods.  

3.1 Coastal compound flooding 

3.1.1 Time evolution of flooding area and total water volume in the study domain 

Figure 3.1 presents the time variation of flooding area and water volume as simulated by 

Exp 3-6. Figure 3.1(a) clearly illustrates the moments when various factors dominated the 

increase in flooding area. Local rainfall (green line) had minimal impact on the flooding 

area throughout the simulation period. The tide (purple line) was the first to have an 

effect, followed by storm surge (red line), and then by upstream discharge (blue line). 

Subsequently, tides, which transitioned from neap tides (around October 8th) to spring 

tides (around October 19th) with increasing amplitude (see Figure 2.7), also contributed 

to the increase in flooding area (purple line). However, the effect of the spring tides was 

not evident in the control simulation (cyan line), because it was obscured by other factors. 

This can be observed in the simulated spatial distribution of flooding area in Section 3.1.3. 

Upstream discharge, tide, and surge had greater effects than local rainfall. Upon 

comparing the peak flooding areas of each individual factor run, we can see that storm 

surge had the largest influence on flooding area, followed by upstream discharge and tide. 

Local rainfall had the least impact on flooding area in this case. It is important to note that 

this does not imply that rainfall is less important than the other factors. By further 

examining the accumulated rainfall in the whole Pee Dee basin (Figure 3.2), we found that 

most of the rainfall fell into upstream basins, including Pee Dee and Waccamaw basins, 

rather than directly into the study domain. Hence, the rain impacted the flooding area by 

contributing to the upstream discharge.  
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Figure 3.1 Time series of (a) flooding area and (b) total water volume for: keeping 

upstream discharge (EXP3, blue lines), keeping local rainfall (EXP4, green lines), 

keeping tide (EXP5, purple lines), and keeping storm surge (EXP6, red lines) scenarios. 

Hurricane Matthew flood event (EXP1, cyan lines) and idealized steady scenario (EXP2, 

black lines) are plotted as reference. Flooding area for rainfall and reference are similar 

to each other.  

There was a modeling bias regarding rainfall representation which needed to be clarified. 

Originating from our hydrodynamic model, governed by the primitive equation - Navier-

Stokes Equations, the inundation model has a weak representation of hydrological 

processes. In our model setting, a curve number (CN) based process was used to model 

surface runoff and infiltration. Thus, three hydrological processes are missing: exfiltration, 

baseflow, and evapotranspiration.  

In reality, rainfall stops infiltrating when the soil becomes saturated. At that point, all 

rainfall water turns into surface runoff, which is the exfiltration in the hydrological cycle. 

Even though the behavior of soil when it gets saturated is an interesting question worth 

exploring, modeling this process is not the focus of my thesis. It is important to clarify that 
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this exfiltration water may not flow into the river channel all the time, especially in 

relatively flat regions, such as our study area. With little or no elevation gradient and thus 

no gravitational forcing, exfiltration water flow is impossible to flow into river channels 

that are kilometers away. Most of the time, the exfiltration water becomes detention 

water for some period and eventually be subsumed into the groundwater table. The 

missing exfiltration process in our model setting does not induce any biases.  

The baseflow, in a typical hydrological model, is traditionally estimated via highly 

conceptual models. The baseflow is then added to the river channel flow as a source of 

lateral flow. Unfortunately, there is no pre-defined or constant river channel in a 2D 

inundation model. Determining how to add the baseflow to the river channel flow and 

understanding its contribution to the flooding area require future investigation. Besides 

these two hydrological processes, evapotranspiration is not represented in the current 

version of TELEMAC-2D. These are expected to influence the flood area by decreasing the 

duration. 

The above discussion briefly clarifies some of the weaknesses of the current inundation 

model concerning modeling bias and uncertainty. In general, we admit the limitations of 

the inundation model that we employed. There is no doubt that current community 

inundation models need to be improved. However, based on the validation presented in 

the previous Method section, we believe that our flooding area results are reasonable 

and reliable. 
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Figure 3.2. Accumulated rainfall in study area and the whole Pee Dee basin from Oct 03 

to Nov 02, 2016.   

The change in total water volume depicted in Figure 3.1(b) corresponded with the 

variation of flooding area in Figure 3.1(a). Storm surge was responsible for the large water 

input around October 8th, followed by a rapid retreat (red line), while after October 18th, 

the total water volume was mainly from upstream discharge (blue line). The tides caused 

semi-diurnal oscillations and the neap-spring cycle (purple line). The total water volume 

driven by local rainfall (green line) was close to that in the reference run (black line), 

indicating that local rainfall did not directly bring a significant amount of water into the 

study domain compared with the other factors. It is consistent with the argument that 
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the impact of rain on the flooding area is indirect. 

3.1.2 Time evolution of river discharge  

Figure 3.3 presents the time series of discharge simulated by the control, reference, and 

Exp 3-6 runs at five cross sections. From Waccamaw River (Pee Dee River) inlets to Winyah 

Bay, the cross-section order is as follows: aa' – bb' – cc' – dd' (ee' – cc' – dd'). The upstream 

discharge (blue lines) was the dominant driver at all cross sections. Local rainfall had little 

impact on the discharges. The semi-diurnal tide effect reached as far as about 50 miles 

inland, slightly affecting the discharge at cross-section ee' and becoming more significant 

as approaching the coast, ultimately dominating near Winyah Bay at cross-section dd'. 

When the storm surge pushed seawater onshore from October 8th to 9th, it blocked the 

river flow and even caused backflows visible at all cross sections aa', bb', cc', dd', and ee'. 

These storm surge-induced backflows (red lines) were blended with tidal oscillations 

(purple lines) and displayed as slightly lower low-tides in the control simulation results 

(cyan lines). Lateral flooding occurred when the blocked river flows exceeded the river 

channel capacity, coinciding with the period when the storm surge also caused a rapid 

increase in the flooded area (see red lines in Figure 3.1).  
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Figure 3.3 Time series of discharge at five cross sections for one group simulations: keep 

upstream discharge (EXP3, blue line), keep local rainfall (EXP4, green line), keep tide 

(EXP5, purple line), and keep storm surge (EXP6, red line) scenarios. Hurricane Matthew 

flood event (EXP1, cyan line) and idealized steady scenario (EXP2, black line) are plotted 

as reference. 

To better understand the blocking effect of sea water to the upstream discharge, an 

idealized one-dimensional hydrological model based on the Saint-Venant (S-V) equation 
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(Equation 2.10, 2.11) is designed. We employ the S-V model to provide simplified, yet 

revealing foundational, physics to the compound flooding phenomena. The first two 

terms of Equation 2.11 are ignored as in WRF-Hydro, which makes the calculation as 

simple as calculating diffusive waves. Then the equations are: 

𝜕𝐴

𝜕𝑡
+

𝜕𝑄

𝜕𝑥
= 𝑞𝑙𝑎𝑡 (3.1) 

gA
𝜕ℎ

𝜕𝑥
+ gA𝑆𝑓 = 0 (3.2) 

where 𝐴 is the flow area of cross-section, 𝑄 is the flow rate, 𝑞𝑙𝑎𝑡is the lateral inflow rate 

into the channel from rainfall and surface runoff, and ℎ is the water surface elevation. 𝑆𝑓 

is the friction slope, defined as Sf = (
Q

K
)2 , where K is the conveyance from Manning’s 

equation, defined as K =
Cm

n
AR2/3, where n is the Manning’s roughness coefficient, R is 

the hydraulic radius R = 𝐴 𝑃⁄ , and 𝑃 is the wetted perimeter.  

The idealized 1-D model used a 10 km linear river channel with a bed slope of 0.0002. The 

initial river water depth was set at 1 m and the vertical dimension of the river channel 

was assumed to be effectively infinite. Two downstream sea levels were used: 1 m 

(Control Experiment) as the normal condition, which is the same as the normal river 

surface height, and 1.5 m (∆-Sea-Level Experiment), as the condition after the hurricane-

induced storm surge. An idealized rainfall amount was added to the river channel, with a 

lateral discharge value of 30 𝑚3 𝑠⁄  to model an example of the rainfall process, lasting for 

30 minutes.  
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Figure 3.4. One-dimensional idealized river channel simulation results. (a) 0.5 hour after 

the rain event; and (b) 3 hours after the rainfall was added to the river channel. The 

black lines are the constant riverbed. The blue and red lines denote the water surface 

height in the river channel and streamflow in m3/s, respectively, The solid lines show 

the results from the simulation with normal sea level as the downstream boundary 

condition, while the dashed lines are those with increased sea level as the initial 

condition. 

Results of this model are shown in Figure 3.4. The dashed black line suggests that the 

rainfall occurred 3 to 4 km from the river mouth. About half an hour after the rainfall was 

deposited into the river channel, the water surface height in the ∆-Sea-Level Experiment 

was higher than the Control Experiment up to 2 km from the downstream boundary. 

Three hours after the rainfall, the discharge in the ∆-Sea-Level Experiment was slightly 

less than the Control Experiment, and the higher water surface level intruded further 

toward inland, reaching up to 4 km from the downstream boundary. The surface water 

slope in the ∆-Sea-Level Experiment was flatter than the Control Experiment, resulting in 

a slower water flow speed (𝑉). However, the higher water surface in ∆-Sea-Level also 
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created a large river cross-section area (A). Therefore, the simulated streamflow 

discharges ( 𝑄 = 𝑉 × 𝐴 ) in the Control Experiment and the ∆-Sea-Level Experiment 

converged after 3 hours.  

Note that in this idealized experiment, the vertical dimension of the river channel was 

assumed to be infinite, meaning that the increased water can be stored in the river 

channel. However, in real-world conditions, the increased water will move laterally and 

become flood waters. 

3.1.3 Spatial distribution of accumulated flooding area 

 

Figure 3.5. Accumulated flooding area distribution for (a) keeping upstream discharge 

(EXP3), (b) keeping tide surge (EXP5), and (c) keeping storm surge (EXP6) scenarios. 

Hurricane Matthew flood event (EXP1, red) and idealized steady scenario (permanent 

water surface, EXP2, blue) are plotted as reference. 

Figure 3.5 displays the accumulated flooding areas simulated by the control run, 

reference run, and the Exp 3, 5, and 6 runs. When only the upstream discharge was 

considered, flooding occurred in the inland portion of the river channel (Figure 3.5a). 

When taking into account only the tide (Figure 3.5b) or storm surge (Figure 3.5c), flooding 
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occurred in coastal regions along the coastline, as well as some low-elevation areas within 

the inland portion of the Waccamaw River channel. Although the flooding patterns 

caused by tide or storm surge were similar, the extent was larger for the latter. The 

contributions of the three factors to the flooding area in Figure 3.5 align with the time 

series in Figure 3.1. Areas flooded solely due to rainfall are not depicted here, as their 

extent is minimal and not easily distinguishable on the maps. 

Figure 3.5 also shows the water surface with a 1 cm threshold, meaning that cells with a 

water depth of less than 1 cm were not considered as wet (flooded) cells. The use of a 

threshold is a standard approach in inundation numerical modeling. In reality, 1 cm water 

depth on the land surface does not pose a problem for human society. As such, this 1 cm 

threshold is reasonable for filtering out insignificant water depths. Meanwhile, there 

were some near-zero water depths in the TELEMAC-2D results, caused by computational 

biases. This 1 cm threshold helped eliminate any misleading effects induced by the biased 

data. 

3.1.4 Compound effect in flooding area 

In the previous sections, we analyzed the individual effects of the four factors - upstream 

discharge, local rainfall, storm surge, and tides - on the temporal and spatial distribution 

of the simulated flooding area. In this section, the compound effect, or the effect of the 

interactions between multiple factors, was quantified as the difference between the 

flooding area simulated as a compound event and the linear sum of flooded areas 

simulated as single-factor events. In other words, the compound effect is defined as: 

|(𝑄 + 𝑅 + 𝑇 + 𝑆)| − (|𝑄| + |𝑅| + |𝑇| + |𝑆|), where the || symbol denotes the flooding 



 79 

area, and 𝑄, 𝑅, 𝑇, and 𝑆 represent upstream discharge, local rainfall, tides, and storm 

surge, respectively. The results are shown in Table 3.1 and Figure 3.6. Due to the relatively 

small effect of rainfall, it was not considered in the assessment of the compound effect. 

Table 3.1 Flooding area comparison between linear combination and compound 

modeling at the time when compound effect is the largest. 

 

The compound effect caused by the interactions between upstream discharge and tide 

resulted in more flooding along the river channel from inland to the coast (Figure 3.6a). 

The values in Table 3.1 imply that the interaction between upstream discharge and tide 

created a larger flooding area (in number) than the interaction between upstream 

discharge and storm surge. This was mainly due to the peak storm surge arrival time, 

which was about 2 days apart from the arrival time of the upstream peak discharge (Figure 

2.4). The interaction between upstream discharge and tide caused an 11% increase in 

compound flooding (Table 3.1) near October 18th at 19:00. In fact, when large upstream 

discharges occur, some inland areas along the river channel are flooded regardless. Since 
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all upstream input water flow cannot be discharged into the ocean instantaneously, there 

was a large flooding area inland (Figure 3.6a). The spring tide further enhanced this 

blocking effect and created a larger flooding area. 

The largest compound effect, resulting from the interaction between upstream discharge 

and storm surge, occurred near October 9th at 14:00 when the storm surge reached the 

coast of this region. It is worth noting that the blocking effect of storm surge started right 

after its arrival at the coast and caused some river flooding upstream along the river 

channel (Figure 3.6b). Along the coastline, there was no additional flooding. The peak 

value of storm surge was similar to the spring tide sea level. In general, the storm surge 

cannot cause serious flooding if it occurs alone, considering the relatively steady 

environment that interacts with the tide every day. There was no more compound 

flooding after October 9th, which was due to the low level of upstream discharge when 

the storm surge arrived. As a result, not much water from upstream could be blocked in 

this region, and the river flooding caused by storm surge was not as severe as that caused 

by the spring tide. However, the compound flooding resulting from the interaction 

between upstream discharge and storm surge was larger in percentage than that caused 

by the interaction between upstream discharge and tide (Table 3.1). 

The compound effect caused by the interaction between tide and storm surge was not 

only along the coastline but also along the river channel (Figure 3.6c). This compound 

effect-caused flooding was larger compared to any other two-factor combinations. 

Approximately 62% more flooding area was caused by the interactively coupled 

compound effect near October 7th at 20:00 when sea level reached its peak in this 
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flooding event. This larger sea level caused compound flooding both along the river 

channel and coastline. Even though the environment was relatively steady, it was 

sensitive to slight changes in natural factors (Figure 2.4). Among all factors, the tide 

seemed to be the most important. This is mainly due to the tide-induced sea level 

variation, which occurs semi-diurnally and diurnally, allowing the tide to interact with 

other natural factors more frequently. For example, during this Hurricane Matthew event, 

the tide interacted with the storm surge around October 8th and with the peak of 

upstream discharge around October 18th. From this perspective, tide is the nexus for 

coastal compound flooding. 

The interaction between local rainfall and other factors caused a nearly zero compound 

effect. This is mainly due to the flooding areas associated with local rainfall being spatially 

scattered and away from both the coastline and the river channel. The rainfall-induced 

flash flooding was isolated in space, inferring that local rainfall had fewer chances to 

interact with upstream discharge, tide, and storm surge. 

It is important to note that the compound effect is not always positive. A negative 

compound effect (Figure 3.6b) indicates that, at times, the flooding area in the coupled 

model was smaller than that in the linear combination. The water level at the seaside can 

either be positive (rising) or negative (falling). When the sea level is positive, more 

flooding could be produced by the blocking effect. However, when the sea level is 

negative, the decrease in flooding in the coupled model is greater than in the linear 

combination. This leads to a negative compound effect. Thus, the compound effect 

exhibits more complex characteristics in both spatial distribution and temporal variation.   
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Figure 3.6 Flooding area comparison between model result and linear combination 

when the compound effect reached its peak. (a) Keep upstream discharge and tide 

(EXP8) at time Oct 18 19:00, (b) Keep upstream and storm surge (EXP9) at time Oct 09 

14:00, (c) Keep tide and storm surge (EXP12) at time Oct 7 20:00. The linear 

combination (green) means that the flooding area appeared in both compound 

modeling result and linear combination of each individual factor result. Compound 

effect (red) means that the flooding area was caused by the interaction between two 

factors.  

In summary, the compound effect caused by upstream discharge, tide, and storm surge 

increased the flooding area by approximately 62% (Table 3.1, Figure 3.7). It is important 

to note that this 62% increase, attributed to the compound effect, was limited to the 

Hurricane Matthew event. For other events, the compound effect may have different 

contributions to coastal flooding, which will be explored in future studies. 
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Figure 3.7. Flooding area comparison between model result and linear combination 

when the compound effect reaches its peak for keeping upstream discharge, local 

rainfall, tide, and storm surge (EXP1). The time is Oct 7 20:00. The linear combination 

(green) means the flooding area appeared in both compound modeling result and linear 

combination of each individual factor result. Compound flooding (red) means the 

flooding area appear only in compound modeling result, which means the compound 

flooding caused by the interaction between each two factors.  
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3.1.5 Compound effect in water volume 

 

Figure 3.8. Water volume comparison between Hurricane Matthew case (control run) 

and linear combination of water volume result from only one factor including upstream 

discharge, local rainfall, tide, and storm surge (EXP3-EXP6). Since constant upstream 

discharge was considered in local rainfall, tide, and storm surge only simulations, three 

times of water volume result from reference run was removed from the linear 

combination. 

The compound effect, caused by different factors, also influenced the timing of the total 

water volume that remained in the study area. Figure 3.8 shows the water volume 

comparison between coupled modeling and the linear combination of four natural factors 

(upstream discharge, storm surge, tide, and local rainfall) individual simulation. Since 

constant upstream discharge was considered in local rainfall, tide, and storm surge 
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individual simulations, three times of water volume resulting from the reference run was 

removed from the linear combination. The total water volume caused by the passage of 

Hurricane Matthew had a higher water volume than the linear combination of water 

volume. This suggests that compound coastal flooding contributed to retaining the water 

volume in the domain. This portion of the water volume that stayed in the domain could 

increase the overall flood duration and, consequently, enhance the flooding process. 

3.1.6 EOF analysis about compound effect 

To further explore the interactions between different factors and their contribution to 

compound effects, Empirical Orthogonal Function (EOF) analysis was employed. EOF is a 

technique used in signal processing, statistics, and climate science to analyze the 

spatiotemporal variability of a dataset. It is a mathematical technique for extracting the 

dominant patterns of variability (modes), which can be helpful in understanding the 

underlying dynamics of the system. Basically, EOF analysis decomposes a matrix into a set 

of orthogonal basis functions (EOFs) and corresponding principal components (PCs) that 

capture the dominant patterns of variability in the data. The PCs and EOFs represent the 

time series of the dominant patterns and the spatial patterns of the dominant modes of 

variability, respectively. 

The following steps were taken to apply EOF analysis in the thesis: 

1) A threshold of 1 cm, consistent with previous analysis, was applied to calculate 

the wet grid over the entire domain. The entire wet grid (water surface), instead 

of the flooding area, was used for EOF analysis. The rationale for this selection is 

that the inclusion of reference run data introduces more uncertainties into the 
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EOF analysis process, making subsequent steps more complicated. 

2) For each time step, we calculated the difference grid between the coupled model 

and linear combination. The value of cells in this difference grid should be 1, 0, or 

-1. The combination of every time step's difference grid formed the matrix input 

for EOF analysis. 

3) Lastly, the correlation coefficient between the first three PCs and three natural 

factors (upstream discharge, storm surge, and tide) was calculated. Local rainfall 

had a minimal effect on the spatial distribution of the flooding area, as analyzed 

previously. Therefore, EOF analysis was not employed to study local rainfall in the 

thesis. 

Figure 3.9 displays the EOF analysis results for the interaction between upstream 

discharge and storm surge. The 1st EOF exhibits a negative pattern in coastal regions and 

a positive pattern inland. The temporal variation of the 1st PC indicates that after the 

storm surge peak arrived (around October 8th), compound flooding in inland regions 

increased, caused by the interaction between upstream discharge and downstream storm 

surge through the blocking effect, while coastal flood inundation in the coastal region 

decreased. Overall, the spatial and temporal patterns align with the positive and negative 

compound effects discussed in Section 3.1.4. Additionally, the 1st PC has a relatively high 

negative correlation with sea level (storm surge), which implies that sea level rise (storm 

surge in this case) variation dominated the difference in inland and coastal compound 

effects. 
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Figure 3.9. EOF analysis for the interaction between upstream discharge and storm 

surge. 1st orthogonal basis functions (EOF) and its corresponding principal component 

(PC). Its contribution for total variation is about 29%. The correlation coefficient of this 

PC with storm surge is -0.66.  

Figure 3.10 and Figure 3.11 display the EOF analysis results for the interaction between 

upstream discharge and tide. The 1st EOF exhibits a positive pattern in coastal regions 

and a positive pattern inland. Considering the temporal variation of the 1st PC, it is 

evident that the spatial pattern was highly related to upstream discharge, primarily from 

the Pee Dee and Waccamaw rivers. The peak of the 1st PC aligned with the variation in 

peak upstream discharge from the Pee Dee and Waccamaw rivers (high correlation 

coefficient). When the upstream discharge peak arrived around October 18th, an increase 

in compound flooding occurred in inland regions, due to the blocking effect. The seawater 
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slowed down the river channel discharge from inland to the ocean. Meanwhile, at coastal 

regions, the large amount of inland river discharge caused more coastal flooding due to 

the compound effect. The 2nd EOF and its corresponding PC exhibit an opposite spatial 

change pattern in compound effect, increasing and decreasing. The variation of the 2nd 

PC is related to the tide process.  

 

Figure 3.10. EOF analysis for interaction between upstream discharge and tide. 1st 

orthogonal basis functions (EOF) and its corresponding principal component (PC). Its 

contribution for total variation is about 18%. The correlation coefficients of this PC with 

three upstream discharge are 0.76, 0.79, and -0.09 for Waccamaw, PeeDee, and Black 

rivers respectively.  
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Figure 3.11. EOF analysis for interaction between upstream discharge and tide. 2nd 

orthogonal basis functions (EOF) and its corresponding principal component (PC). Its 

contribution for total variation is about 14%. The correlation coefficient of this PC with 

tide is -0.64. 

Figure 3.12 displays the EOF analysis results for the interaction between storm surge and 

tide. The 1st EOF exhibits a negative pattern in some inland regions and a positive pattern 

in nearly all coastal and inland regions. With the negative pattern at the beginning of the 

1st PC time series, it can be inferred that the early storm surge caused significant 

compound flooding both inland and along the coast through the blocking effect. The 1st 

PC is more closely related to storm surge, with a correlation coefficient of -0.43.  
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Figure 3.12. EOF analysis for interaction between storm surge and tide. 1st orthogonal 

basis functions (EOF) and its corresponding principal component (PC). Its contribution 

for total variation is about 12%. The correlation coefficient of this PC with surge is -0.43. 

3.1.7 Summary about coastal compound flooding 

In summary, the characteristics of coastal compound flooding can be described as follows: 

1) Interactions between different natural factors can lead to more severe flooding 

(long-lasting water and increased water retention in the basin). The compound 

effect, caused by the combination of multiple factors, was quantified using 

numerical modeling. The blocking effect between downstream water levels 

(including tide and storm surge) and upstream discharge was the main reason for 

the compound effect in coastal flooding phenomena. 

2) Interactions between different factors can change the timing of flooding area, 
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river discharge, and total water volume variation in the basin. The evolution of 

different factors is significant for the occurrence of coastal compound flooding. As 

coastal compound flooding is coincidental, the coastal region is greatly impacted 

once this coincidence occurs. 

3) Local rainfall influences coastal flooding only by causing limited flash flooding. Due 

to the limitations of modeling, the analysis about local rainfall contains a great 

deal of uncertainty. There is no doubt that the current inundation model needs 

improvement. Nevertheless, numerical modeling is proposed as an important and 

efficient way to analyze coastal compound flooding. 

3.2 Flood risk sensitivity tests 

3.2.1 Natural factors 

The entire calculation of flood risk included the population density grid and GDP per 

capita for all years from 2000 to 2020. In this section, we only compare natural factors. 

Therefore, only the flood risk calculations based on the population grid and GDP per 

capita in 2016 are shown here (Table 3.2). In the following discussion, data from the World 

Bank was mainly used. The time of flooding area grid used to calculate flood risk was the 

maximum flooding risk time instead of the maximum flooding area time since flooding 

and flood risk may not peak at same time. 

Table 3.2. Flood Risk calculation for different environment settings based on population 

grid and GDP per capita at 2016. The unit is as billion 2020 US$. 

 Upstream 
Discharge 

Storm 
Surge 

Sea level 
Rise 

Flood Risk 
(unit: billion 2020 US$) 

Sen_EXP001 1% 1% 0m 3.68 

Sen_EXP002 1% 1% 0.43m 3.93 
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Sen_EXP003 1% 1% 0.55m 4.11 

Sen_EXP004 1% 1% 0.84m 4.36 

Sen_EXP005 1% 2% 0m 3.58 

Sen_EXP006 1% 2% 0.43m 3.82 

Sen_EXP007 1% 2% 0.55m 3.90 

Sen_EXP008 1% 2% 0.84m 4.23 

Sen_EXP009 1% 5% 0m 3.49 

Sen_EXP010 1% 5% 0.43m 3.71 

Sen_EXP011 1% 5% 0.55m 3.77 

Sen_EXP012 1% 5% 0.84m 3.98 

Sen_EXP013 1% 10% 0m 3.43 

Sen_EXP014 1% 10% 0.43m 3.65 

Sen_EXP015 1% 10% 0.55m 3.71 

Sen_EXP016 1% 10% 0.84m 3.87 

Sen_EXP017 2% 1% 0m 3.57 

Sen_EXP018 2% 1% 0.43m 3.85 

Sen_EXP019 2% 1% 0.55m 3.97 

Sen_EXP020 2% 1% 0.84m 4.32 

Sen_EXP021 2% 2% 0m 3.47 

Sen_EXP022 2% 2% 0.43m 3.72 

Sen_EXP023 2% 2% 0.55m 3.82 

Sen_EXP024 2% 2% 0.84m 4.13 

Sen_EXP025 2% 5% 0m 3.37 

Sen_EXP026 2% 5% 0.43m 3.61 

Sen_EXP027 2% 5% 0.55m 3.67 

Sen_EXP028 2% 5% 0.84m 3.88 

Sen_EXP029 2% 10% 0m 3.31 

Sen_EXP030 2% 10% 0.43m 3.54 

Sen_EXP031 2% 10% 0.55m 3.61 

Sen_EXP032 2% 10% 0.84m 3.79 

Sen_EXP033 5% 1% 0m 3.50 

Sen_EXP034 5% 1% 0.43m 3.80 

Sen_EXP035 5% 1% 0.55m 3.91 

Sen_EXP036 5% 1% 0.84m 4.25 

Sen_EXP037 5% 2% 0m 3.38 

Sen_EXP038 5% 2% 0.43m 3.66 

Sen_EXP039 5% 2% 0.55m 3.76 

Sen_EXP040 5% 2% 0.84m 4.07 

Sen_EXP041 5% 5% 0m 3.26 

Sen_EXP042 5% 5% 0.43m 3.54 

Sen_EXP043 5% 5% 0.55m 3.61 

Sen_EXP044 5% 5% 0.84m 3.83 

Sen_EXP045 5% 10% 0m 3.08 
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Sen_EXP046 5% 10% 0.43m 3.45 

Sen_EXP047 5% 10% 0.55m 3.53 

Sen_EXP048 5% 10% 0.84m 3.72 

Sen_EXP049 10% 1% 0m 3.46 

Sen_EXP050 10% 1% 0.43m 3.76 

Sen_EXP051 10% 1% 0.55m 3.86 

Sen_EXP052 10% 1% 0.84m 4.20 

Sen_EXP053 10% 2% 0m 3.35 

Sen_EXP054 10% 2% 0.43m 3.64 

Sen_EXP055 10% 2% 0.55m 3.73 

Sen_EXP056 10% 2% 0.84m 4.02 

Sen_EXP057 10% 5% 0m 3.19 

Sen_EXP058 10% 5% 0.43m 3.51 

Sen_EXP059 10% 5% 0.55m 3.58 

Sen_EXP060 10% 5% 0.84m 3.79 

Sen_EXP061 10% 10% 0m 3.03 

Sen_EXP062 10% 10% 0.43m 3.41 

Sen_EXP063 10% 10% 0.55m 3.51 

Sen_EXP064 10% 10% 0.84m 3.70 

 

By comparing Sen_EXP001, Sen_EXP002, Sen_EXP003, and Sen_EXP004 in Table 3.2, we 

can identify the increased flood risk caused by sea level rise. For coastal flooding caused 

by a 1% annual chance upstream discharge and a 1% annual chance storm surge, the flood 

risk increased by 6.94%, 11.85%, and 18.50% with 0.43m, 0.55m, and 0.84m sea level rise 

by the end of this century, respectively. For different upstream discharge and storm surge 

settings, sea level rise could increase flood risk at different rates, as shown in Table 3.3. 

For example, for flooding caused by 1% upstream discharge + 1% storm surge, the 

increase in flood risk due to sea level rise from 0 to 0.43m is about 6.94%. For a smaller 

flood event caused by 2% upstream discharge + 2% storm surge, the flood risk increase is 

7.03%. Similarly, the increases in flood risk are 8.82% and 12.63% for 5% upstream 

discharge + 5% storm surge and 10% upstream discharge + 10% storm surge. It suggests 
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that long-term sea level rise could make low-intensity coastal floods more dangerous by 

increasing flood risk. A similar pattern was also found in sea level rise from 0 to 0.55m 

and from 0 to 0.84m. However, this general pattern does not always work. Comparing 1% 

upstream discharge + 1% storm surge and 1% upstream discharge + 2% storm surge flood 

events, the flood risk increase due to sea level rise from 0 to 0.43m is larger in the former 

event, which is a larger flood event. The complexity in change pattern is mainly due to the 

complexity of coastal compound flooding. Additionally, an increase in upstream discharge 

and storm surge may not cause the flooding area to increase simultaneously. 

Table 3.3. Flood Risk increase rate by different SLR scenarios.   

Upstream 
Discharge 

Storm Surge 
Sea level Rise 

(0 m to 0.43m) 
Sea level Rise  

(0 m to 0.55m) 
Sea level Rise 

 (0 m to 0.84m) 

1% 1% 6.94% 11.85% 18.50% 

1% 2% 6.82% 8.90% 18.10% 

1% 5% 6.38% 7.90% 13.98% 

1% 10% 6.19% 8.05% 13.00% 

2% 1% 7.74% 11.31% 21.13% 

2% 2% 7.03% 9.79% 18.96% 

2% 5% 6.60% 8.81% 14.78% 

2% 10% 7.07% 9.00% 14.79% 

5% 1% 8.81% 11.85% 21.58% 

5% 2% 8.49% 11.32% 20.44% 

5% 5% 8.82% 10.78% 17.65% 

5% 10% 12.07% 14.48% 20.69% 

10% 1% 8.59% 11.66% 21.17% 

10% 2% 8.57% 11.43% 20.00% 

10% 5% 10.00% 12.33% 19.00% 

10% 10% 12.63% 15.79% 22.11% 

 

By comparing Sen_EXP001, Sen_EXP017, Sen_EXP033, and Sen_EXP049 in Table 3.2, we 

can identify the increased flood risk caused by changes in upstream discharge. For 

environmental settings with 0m sea level rise and a 1% annual chance storm surge, the 
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flood risk increased by 0.92%, 3.07%, and 6.13% when the upstream discharge magnitude 

changed from a 10% to a 5%, 2%, and 1% annual chance, respectively. The flood risk 

changed along with multiple upstream discharge scenarios for different sea level rise and 

storm surge settings, as shown in Table 3.4. The largest sea level setting is 1% storm surge 

+ 0.84m sea level rise, while the smallest sea level setting is 10% storm surge + 0m sea 

level rise. The increase of flood risk due to upstream discharge is lower in the largest sea 

level setting and higher in the smallest sea level setting. This indicates that when the sea 

level remains relatively high, the importance of upstream discharge in contributing to 

coastal flood risk decreases. 

Table 3.4. Flood Risk increase rate by upstream discharge with different annual chance.   

Storm Surge 
Sea level 

Rise 

Upstream 
Discharge 

(10% to 5%) 

Upstream 
Discharge 

(10% to 2%) 

Upstream 
Discharge 

(10% to 1%) 

1% 0m 0.92% 3.07% 6.13% 

1% 0.43m 1.13% 2.26% 4.52% 

1% 0.55m 1.10% 2.75% 6.32% 

1% 0.84m 1.27% 3.04% 3.80% 

2% 0m 0.95% 3.81% 6.98% 

2% 0.43m 0.88% 2.34% 5.26% 

2% 0.55m 0.85% 2.28% 4.56% 

2% 0.84m 1.32% 2.91% 5.29% 

5% 0m 2.00% 6.00% 9.67% 

5% 0.43m 0.91% 2.73% 6.06% 

5% 0.55m 0.59% 2.67% 5.34% 

5% 0.84m 0.84% 2.24% 5.04% 

10% 0m 1.75% 9.12% 13.33% 

10% 0.43m 1.25% 3.74% 6.85% 

10% 0.55m 0.61% 2.73% 5.76% 

10% 0.84m 0.57% 2.59% 4.89% 

 

 



 96 

Table 3.5. Flood Risk increase rate by storm surge with different annual chance.   

Upstream 
Discharge 

Sea level 
Rise 

Storm Surge 
(10% to 5%) 

Storm Surge 
(10% to 2%) 

Storm Surge 
(10% to 1%) 

1% 0m 1.86% 4.33% 7.12% 

1% 0.43m 2.04% 4.96% 7.87% 

1% 0.55m 1.72% 5.16% 10.89% 

1% 0.84m 2.74% 9.04% 12.33% 

2% 0m 2.25% 5.14% 8.04% 

2% 0.43m 1.80% 5.11% 8.71% 

2% 0.55m 2.06% 5.90% 10.32% 

2% 0.84m 2.24% 8.96% 14.01% 

5% 0m 5.52% 9.66% 13.45% 

5% 0.43m 2.46% 6.15% 10.15% 

5% 0.55m 2.11% 6.63% 10.84% 

5% 0.84m 2.86% 9.43% 14.29% 

10% 0m 5.26% 10.53% 14.39% 

10% 0.43m 2.80% 6.54% 10.28% 

10% 0.55m 2.12% 6.36% 10.30% 

10% 0.84m 2.59% 8.62% 13.51% 

 

By comparing Sen_EXP001, Sen_EXP005, Sen_EXP009, and Sen_EXP013 in Table 3.2, we 

can identify the increased flood risk caused by changes in storm surge magnitude. For 

environmental settings with 0m sea level rise and a 1% annual chance upstream 

discharge, the flood risk increased by 1.86%, 4.33%, and 7.12% with the storm surge 

magnitude changing from a 10% to a 5%, 2%, and 1% annual chance, respectively. The 

flood risk changed along with different storm surge scenarios for various sea level rise and 

upstream settings, as shown in Table 3.5. The general pattern of storm surge in changing 

flood risk is more complicated. On the one hand, as upstream discharge magnitude 

decreased, storm surge magnitude change enhanced the flood risk increase. On the other 

hand, as sea level rise increased, the increase of flood risk caused by storm surge 

magnitude change also increased. This illustrates that when the discharge decreases, the 
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importance of storm surge in contributing to flood risk increases. Meanwhile, sea level 

rise enhances the contribution of storm surge in flood risk calculation. This general 

pattern agrees with most of the data but not all. 

In summary, the flood risk increase due to sea level rise is larger than due to the 

magnitude change of upstream discharge and storm surge. Basically, larger upstream 

discharge, storm surge, and sea level rise lead to more flood risk. There are some special 

patterns of changing flood risk due to different factors: 

1) Long-term sea level rise makes low-intensity coastal floods more dangerous by 

increasing flood risk. 

2) The higher the sea level setting, including both storm surge and long-term sea 

level rise, the lower the flood risk increase due to upstream discharge change. 

3) As upstream discharge magnitude decreases, the influence of storm surge 

magnitude change on flood risk increases becomes stronger. 

4) The increases in sea level rise enhance flood risk increases caused by storm surge 

magnitude change. 

3.2.2 Human factors 

In this section, we focus solely on human factors. The flood risk calculations based on a 

specific flood event with a 1% annual chance upstream discharge and a 1% annual chance 

storm surge are shown here. The entire calculation used the population grid and GDP per 

capita from 2000 to 2020. For a simplified comparison, we display results only for the 

years 2000, 2005, 2010, 2015, and 2020. Different sea level rise scenarios are shown 

separately in Tables 3.6, 3.7, 3.8 and 3.9. 
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Here is a simple instruction for understanding the information in the tables: 

1) At the center of each table, the flood risk (in billion 2020 US$) was calculated 

based on different combinations of population grid and GDP per capita.  

2) The last column shows the flood risk increase rate due to population growth 

annually (along columns).  

3) The last row shows the flood risk increase rate resulting from GDP increase 

annually (along rows).  

4) The last cell is the flood risk increase rate caused by both population growth and 

GDP increase (along diagonal). 

 

Table 3.6. Flood Risk calculation by different population and GDP per capita settings, 

with 0 m sea level rise (Unit: billion 2020 US$). The last column shows the flood risk 

increase rate along population growth annually (along columns). The last row shows 

the flood risk increase rate along GDP increase annually (along rows). The last cell is 

the flood risk increase rate along both population growth and GDP increase (along 

diagonal). 

              GDP per capita 
Population 

2000 2005 2010 2015 2020 
Population growth 

annually rate 

2000 2.07 2.24 2.24 2.41 2.48  

2005 2.41 2.61 2.61 2.81 2.89 3.08% 

2010 2.74 2.98 2.97 3.21 3.29 2.67% 

2015 3.08 3.34 3.34 3.60 3.70 2.36% 

2020 3.42 3.71 3.71 4.00 4.11 2.11% 

GDP increase 
annually rate  

1.63% 0.00% 1.51% 0.54% 3.49% 
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Table 3.7. Similar with Table 3.7 but with 0.43 m sea level rise. 

              GDP per capita 
Population 

2000 2005 2010 2015 2020 
Population growth 

annually rate 

2000 2.21 2.40 2.40 2.58 2.65  
2005 2.57 2.79 2.79 3.01 3.09 3.08% 

2010 2.94 3.18 3.18 3.43 3.52 2.67% 

2015 3.30 3.58 3.57 3.85 3.96 2.35% 

2020 3.66 3.97 3.97 4.28 4.39 2.11% 

GDP increase 
annually rate  

1.63% 0.00% 1.51% 0.54% 3.49% 

 

Table 3.8. Similar with Table 3.7 but with 0.55 m sea level rise. 

              GDP per capita 
Population 

2000 2005 2010 2015 2020 
Population growth 

annually rate 

2000 2.32 2.52 2.52 2.71 2.78  
2005 2.70 2.92 2.92 3.15 3.23 3.04% 

2010 3.07 3.33 3.33 3.59 3.69 2.64% 

2015 3.45 3.74 3.74 4.03 4.14 2.33% 

2020 3.82 4.14 4.14 4.46 4.59 2.09% 

GDP increase 
annually rate 

 1.63% 0.00% 1.51% 0.54% 3.46% 

 

Table 3.9 Similar with Table 3.7 but with 0.84 m sea level rise. 

              GDP per capita 
Population 

2000 2005 2010 2015 2020 
Population growth 

annually rate 

2000 2.47 2.68 2.67 2.88 2.96  
2005 2.86 3.11 3.10 3.35 3.44 3.02% 

2010 3.26 3.54 3.53 3.81 3.91 2.63% 

2015 3.66 3.97 3.96 4.27 4.39 2.32% 

2020 4.05 4.40 4.39 4.73 4.86 2.08% 

GDP increase 
annually rate  

1.63% 0.00% 1.51% 0.54% 3.45% 

 

Under various sea level rise scenarios, the flood risk increases from 3.45% to 3.49% due 
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to human factors, including population growth and GDP increase. By comparison, the 

population growth had relatively large effects on the annual flood risk increase than GDP 

increase. The annual GDP increase rate from 2005 to 2010 is negative, which means that 

the estimated flood risk has slightly decrease if only considering GDP change from 2005 

to 2010. 

3.2.3 Comparison between natural and human factors 

Table 3.10. Flood risk increase range related to specific factors. 

Factor Flood risk increase range Detailed explanation 

Upstream 
discharge 

0.57% - 13.33% 
Upstream discharge magnitude with certain 

annual chance 

Storm surge 1.72% - 14.39% Storm surge height with certain annual chance 

Sea level rise 6.19% - 22.11% 
Sea level rise prediction by the end of this 

century with different RCPs projection 

Population 
growth 

2.08% - 3.52% Population growth rates every year 

GDP increase 0.54% - 1.63% GDP increase rates every year 

 

Combining the data analyzed in the previous two sections, a comparison between natural 

and human factors can be established, highlighting the sensitivity of flood risk in response 

to the change of each factor separately (Table 3.10). In general, flood risk is more sensitive 

to changes in natural factors than changes in human factors, as indicated by the largest 

increase rate for each factor. Based on Table 3.10, the overall importance (sensitivity) 

order, from largest to smallest, is: sea level rise, storm surge, upstream discharge, 

population growth, and GDP increase. It should be noted that the increase range of 

natural factors is much larger than human factors due to the fact that the effect 

(compound effect) of one natural factor on flood risk estimation is not independent. 

Depending on how other natural factors are set, one natural factor could either increase 
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or decrease the flood risk.  

Time scale is a significant issue when describing the importance of factors contributing to 

flood risk. The actual factors compared in this study are explained in detail in Table 3.11, 

and they have different time scales. Sea level rise is a long-term issue with a near 100-

year time scale. Upstream discharge and storm surge occur every year but with different 

periods for different magnitudes. Population growth and GDP increase are annual 

changes. 

Therefore, the modified explanation of the importance order shown in the above table 

(Table 3.11) should be as follows: Compared to extreme flood events with different 

magnitudes, annual population growth and GDP increase, long-term sea level rise created 

more potential flood risk. If we consider the population growth and GDP increase in two 

decades (2000 to 2020), the flood risk increase caused by population growth and GDP 

increase could be around 63.8% and 19.6%, respectively. Thus, human factors are much 

more important than natural factors. Comparing the rare extreme flood events with 

extreme weather conditions, such as storms, hurricanes, and long-term sea level rise, 

rapid population growth and GDP increase related to urbanization bring more flood risk 

in the future. This agrees with empirical evidence suggesting that both population growth 

and GDP increase are associated with increased vulnerability to coastal flooding 

(Hallegatte et al., 2013; Neumann et al., 2015). 

3.3 Historical flood event study 

Figure 3.13 to Figure 3.19 display the model input for each historical flood event under 

examination. In general, the upstream discharges for Hurricane Bertha 2020, Hurricane 
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Florence and Michael 2018, and Hurricane Matthew 2016 were significantly larger than 

that of other events, suggesting an increasing trend in the magnitude of coastal floods in 

this region. 

 

Figure 3.13. Model inputs for 2002 Hurricane Kyle event: River discharge from 

Waccamaw, PeeDee, and Black Rivers; sea level variation at seaside, tide and storm 

surge are plotted separately.  
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Figure 3.14. Model inputs for 2004 Hurricane Gaston and Ivan event: River discharge 

from Waccamaw, PeeDee, and Black Rivers; sea level variation at seaside, tide and storm 

surge are plotted separately.  

 

Figure 3.15. Model inputs for 2008 Hurricane Hanna event: River discharge from 

Waccamaw, PeeDee, and Black Rivers; sea level variation at seaside, tide and storm 

surge are plotted separately.  
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Figure 3.16. Model inputs for 2016 Hurricane Matthew event: River discharge from 

Waccamaw, PeeDee, and Black Rivers; sea level variation at seaside, tide and storm 

surge are plotted separately.  

 

Figure 3.17. Model inputs for 2018 Hurricane Florence and Michael event: River 

discharge from Waccamaw, PeeDee, and Black Rivers; sea level variation at seaside, tide 

and storm surge are plotted separately.  
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Figure 3.18. Model inputs for 2019 hurricane Dorian event: River discharge from 

Waccamaw, PeeDee, and Black Rivers; sea level variation at seaside, tide and storm 

surge are plotted separately.  

 

Figure 3.19. Model inputs for 2020 hurricane Bertha event: River discharge from 

Waccamaw, PeeDee, and Black Rivers; sea level variation at seaside, tide and storm 

surge are plotted separately.  

Table 3.11 shows the maximum flooding area for historical coastal flood events with 

different upstream discharge, storm surge, and tide settings. Table 3.12 shows the flood 

risk calculated for historical coastal flood events with different upstream discharge, storm 

surge, and tide settings, based on the population grid and GDP per capita for each specific 

year. For example, the flood risk for Hurricane Kyle 2002 employed the population grid 

and GDP per capita in 2002. 

Similar to the analysis based on upstream discharge from model input, the maximum 

flooding area shows an increasing trend from 2002 to 2020. Hurricane Bertha in 2020, 
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Hurricane Florence and Michael in 2018, and Hurricane Matthew in 2016 accounted for 

the three largest flooding area events. Notably, upstream discharge, storm surge, and tide 

contributed to different portions of the flooding area in various flood events (Table 3.12). 

For instance, in the Hurricane Matthew case, the storm surge had the greatest influence 

on the flooding area (762.64 km²), whereas in the Hurricane Florence and Michael cases, 

upstream discharge had the most significant impact on the flooding area (730.67 km²). 

The difference is due to the timing of how each natural factor interacts with one another, 

as discussed in the previous compound flooding section. Coastal flooding is a coincidental 

event that highly depends on timing. 

Table 3.11. Wet area (include permanent water surface and flooding area) calculation 

for different upstream discharge, storm surge, and tide settings of historical flood events 

(unit:  km2).   

Event Name Year 
Upstream 
discharge 

only 

Storm 
surge 
only 

Tide 
only 

Upstream 
discharge + 

Storm 
surge 

Upstream 
discharge + 

Tide 

Storm 
surge + 

Tide 

Upstream 
discharge + 
Storm surge 

+ Tide 

KYLE 2002 617.76 675.1 697.85 684.75 729.77 741.54 751.73 

GASTON & 
IVAN 

2004 
692.32 648.87 735.48 696.24 761.56 744.19 758.56 

HANNA 2008 654.27 697.3 679.82 728.76 737.89 737.76 765.8 

MATTHEW 2016 719.79 762.64 680.24 771.05 796.75 776.44 816.7 

FLORENCE & 
MICHAEL 

2018 
730.67 649.75 629.33 758.81 797.3 681.43 812.94 

DORIAN 2019 657.37 625.07 635.06 695.03 742.81 701.39 762.11 

BERTHA 2020 710.3 617.16 697.56 721.68 798.66 696.51 798.11 

 

The estimated flood risk for Hurricanes Florence and Michael in 2018 is higher than for 

Hurricane Matthew in 2016. The logical flow suggests that Hurricanes Florence and 

Michael in 2018 brought more upstream discharge to the study area. However, due to 

the interaction between the inland river system and the coastal ocean, the larger 
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discharge did not result in a larger flooding area. The stronger population growth and GDP 

increase in 2018 compared with 2016 (Table 3.13) lead to the higher estimated flood risk 

for Hurricanes Florence and Michael than for Hurricane Matthew. Even Hurricane Bertha 

in 2020, which has a lower upstream discharge and sea level change, has a larger 

estimated flood risk than Hurricane Matthew in 2016.  

Table 3.12. Flood risk calculation for different upstream discharge, storm surge, and 

tide settings of historical flood events (unit: billion 2020 US $).   

Event 
Name 

Year 
Upstream 
discharge 

only 

Storm 
surge 
only 

Tide 
only 

Upstream 
discharge + 

Storm 
surge 

Upstream 
discharge + 

Tide 

Storm 
surge 
+ Tide 

Upstream 
discharge + 
Storm surge 

+ Tide 

 

KYLE 2002 1.09 1.25 1.32 1.27 1.4 1.36 1.42  

GASTON & 
IVAN 

2004 1.41 1.3 1.53 1.42 1.54 1.62 1.61 
 

HANNA 2008 1.51 1.68 1.64 1.73 1.78 1.81 1.87  

MATTHEW 2016 2.41 2.44 2.24 2.6 2.53 2.83 2.92  

FLORENCE 
& MICHAEL 

2018 2.78 2.27 2.26 2.94 2.39 3.15 3.19 
 

DORIAN 2019 2.3 2.23 2.37 2.45 2.6 2.67 2.75  

BERTHA 2020 2.58 2.05 2.43 2.65 2.43 3.08 3.07  
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4 Conclusion

This study seeks to investigate the proposition that human influences can significantly 

affect current and future coastal flooding risks for coastal communities, on par with 

natural factors. The research contributed to a deeper understanding of coastal compound 

flood hazards. To accomplish these objectives, we created a holistic approach for 

assessing coastal flood risk, incorporating both natural processes and human-related 

factors (e.g., GDP per capita and population density). This analysis shed light on the 

respective roles and consequences of these factors in shaping coastal flood risk. 

Coastal compound flooding, as a natural process, encompasses several key 

characteristics: 

1) The interplay among the natural factors (tide, storm surge, upstream discharge, and 

sea level rise) could alter the timing of inundated areas, river discharge, and overall water 

volume fluctuations in the basin.  

2) The interactions between different natural factors lead to more severe flooding with 

long-lasting water and increased water retention in the basin.  

3) The blocking effect between downstream water levels and upstream discharge is the 

main reason for the compound effect in coastal flooding. 

4) Local rainfall plays a limited role in coastal flooding.  

Coastal flood risk, as a human-related concern, is influenced by the severity of coastal 
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flood hazards which depend on the interplay of natural factors and their compounded 

effects, as well as the vulnerability stemming from population growth and economic 

development. The importance of each factor varies with timescale:  

1) For a flooding event, the magnitude of natural factor (storm surge and discharge) holds 

greater significance compared with human factors.  

2) On a daily timescale, tides affect both inland and coastal areas through their interaction 

with upstream discharge. 

3) Over the course of decades, population and GDP remain the primary factors shaping 

flood risk assessments by increase the vulnerability of coastal communities to flooding.  

4) In discussions of potential flood risk toward the end of the century, long-term sea level 

rise is an essential factor that must be considered. 

For coastal flooding along the northeastern South Carolina coast, the interaction between 

sea level rise and upstream discharge considerably increases compound coastal flooding, 

which heightens the potential coastal flood hazards in the future. Over the past 20 years, 

the flood risk has continually increased due to the growing vulnerability of coastal 

communities to coastal floods. 

The current study faces certain limitations regarding the modeling of rainfall process and 

the representation of economic factors, which warrant further exploration. 

Firstly, the current modeling settings lack three essential hydrological processes: 

exfiltration, baseflow, and evapotranspiration. This limitation negatively affects the 

rainfall representation in the study. To overcome this issue, it is necessary to address the 

conflicts between the hydrological model and the inundation model. Additionally, further 
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research should focus on developing improved model coupling strategies. 

Secondly, the representation of economic factors in coastal flood risk assessments could 

be refined. Presently, the study mainly focuses on population growth and GDP as 

indicators of vulnerability. While these factors are indeed important, a more 

comprehensive economic representation should also consider other dimensions, such as 

infrastructure investments, land use policies, and adaptive capacity of coastal 

communities. Incorporating these additional factors would provide a more nuanced 

understanding of how economic aspects influence coastal flood risk and vulnerability. 

This, in turn, could inform more targeted and effective strategies for managing and 

reducing flood risk in coastal areas. 

By addressing these limitations and expanding the scope of the study, future research can 

contribute to a more robust and comprehensive understanding of coastal flood risk, 

which is essential for developing effective mitigation and adaptation measures to protect 

vulnerable coastal communities. 

Overall, coastal flooding is a common phenomenon in coastal regions. However, due to 

the combined effects of climate change and coastal urbanization, the likelihood of daily 

coastal floods escalating into extreme coastal flood hazards has increased. Compared to 

the increased flood risk resulting from the compound effect of various natural factors, the 

heightened vulnerability caused by population growth and economic development also 

contributes significantly to the overall flood risk.  
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