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Abstract 

This study investigates range variations of refractive environments to develop a 

parametric model for heterogeneous refractive conditions for use in inversion methods. A 

blended data source that combines numerical weather prediction data (COAMPS®) and a 

semi-empirical model based on boundary layer similarity theory (NAVSLaM) that contains 

hourly forecasts over a 1-month period from October to November is used. A novel 11-

parameter heterogeneous refractive gradient model (HRGM) is developed that can be 

integrated to produce estimations of modified refractivity with respect to range from which 

propagation pattern predictions can be simulated. Both modified refractivity and 

propagation loss (PL) patterns based-on the HRGM are evaluated and compared to that of 

the blended data set. On average, the HRGM is able to accurately estimate refractivity and 

PL in horizontally heterogeneous refractive environments. Although biases are small, the 

HRGM exhibits typical underestimation of modified refractivity beneath the duct height, 

and overestimation above the duct height. PL discrepancies due to the HRGM occur in the 

multipath nulls and above typical duct heights in the long range region, but often the latter 

are relatively small discrepancies. The leading cause of error in the propagation predictions 

associated with the HRGM over the entire domain are related to inaccuracies in the model’s 

prediction of duct heights with respect to range, but these PL errors are mostly constrained 

to regions near the multipath nulls. The PL discrepancies in the long range (<45 km) are 

related to inaccuracies of the model’s prediction of refractive gradients above the surface. 

Although containing few discrepancies, the HRGM presented in this study provides a novel 

parametric model that can be used to solve radar inversion problems in horizontally 

heterogeneous refractive environments.   
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1.0 Introduction 

Many communication systems and remote sensing technologies rely on the 

transmittance and retrieval of electromagnetic (EM) waves to detect and send information 

through the earth’s environment. Common devices that utilize EM waves to operate include 

radios, cell phones, wireless internet, Bluetooth devices, televisions, and weather radar. 

The EM waves emitted from devices such as these are affected by the medium in which 

they propagate. Thus, the performance of these systems is affected by the environment in 

which they operate. This study investigates the influence of the environment on the 

behavior of EM waves used by radar detection systems.    

Radio detection and ranging, or radar, is a detection system that emits EM waves 

to sense a wide variety of targets over large distances. Radar is used in remote sensing 

capacities in fields of atmospheric and oceanic science to detect and track atmospheric 

aerosols such as clouds and smoke, rain, or sea surface features such as waves.  This 

tracking enables improved weather and other environmental predictions. Radar is also used 

in engineering applications such as by air-traffic control stations to detect aircraft, and 

aboard military aircraft and vessels to surveil the air and sea.  

 Radar aboard ships, or from other offshore vehicles and platforms, operate in the 

marine-atmosphere boundary layer (MABL), which is a complex environment that 

involves significant transport of mass and momentum including air-sea exchange. The 
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MABL and sea surface affect radar system performance due to processes such as forward 

scattering, reflection, attenuation, and refraction.  This study focuses on the effects of 

refraction, more specifically ducting, which is a special case of refraction. Ducting causes 

EM waves traveling through the MABL to bend towards the surface, often trapping the 

waves near the surface (Skolnik, 1990). The trapping of EM waves can result in holes in 

radar detection as well as extending detection ranges – both of which can contribute to 

positioning uncertainties.  

 Direct atmospheric measurements of ducting environments are difficult because it 

requires instantaneous, fine-scale measurements of atmospheric properties over large 

spatial areas in both height and range. Routine direct measurements are both impractical 

and expensive; requiring radiosondes, ships, aircraft, and many personnel to produce an 

accurate representation of the atmosphere, if ever possible. As such, numerical methods 

exist to predict atmospheric environments using numerical weather prediction models 

(NWP) or theoretical models such as Monin-Obukhov similarity theory (MO theory). 

However, these methods are often too low resolution to resolve ducting environments, 

make too many assumptions, and require direct atmospheric measurements for initial 

conditions (Karimian et al. 2013).  

 Another approach to evaluate the environment is to inversely determine the 

atmospheric conditions using radar measurements (Karimian et al. 2011). Unlike 

atmospheric measurements, radar measurements are more practical to be made in-situ 

because they are a remote sensor. Many studies have investigated inverse approaches of 

predicting atmospheric ducting conditions using radar wave propagation (Karimian et al. 

2011; Yardim et. al., 2009; Yardim et. al., 2006; Gerstoft et. al. 2006; Penton and Hackett, 
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2018; Matsko and Hackett, 2019). However, many of these studies have assumed a 

horizontally homogeneous atmosphere. The validity of this homogeneity assumption is 

questionable, especially in areas with rapidly changing temperature, moisture, or pressure 

such as those seen in coastal zones. This study aims to improve these inversion methods 

by exploring how heterogeneous environments can be taken into account. In particular, this 

study examines NWP forecasts, theoretical estimates, and atmospheric measurements to 

assess the importance and significance of horizontal inhomogeneity.  This information is 

used to develop a parametric model that may incorporate inhomogeneity into these 

inversion approaches. 

 In the next section, background information on electromagnetic wave propagation 

in marine environments, atmospheric refractivity, types of ducts and their meteorological 

causes, heterogeneous environments, along with previous and current modeling of 

evaporation ducts for inversion studies are discussed. The third section discusses the 

research objective. The fourth section discusses the methods that are applied in this study 

including data sources, EM propagation modeling, methods for characterizing variations 

of refractive attributes (modified refractivity, duct height, and refractivity gradients) over 

range, and methods for evaluating the range-dependent parametric model developed in this 

study. The fifth section contains the results including the characterization of range 

dependent variations of modified refractivity, duct height, and refractive gradients; a 

proposed parametric model; and evaluation of the proposed parametric model. The final 

section contains a summary and the conclusions of this study.  
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2.0 Background 

2.1 Electromagnetic Wave Propagation in Marine Environments 

Communication systems and remote sensing technologies rely on the propagation 

of EM waves in Earth’s environment. EM waves are a result of oscillations between an 

electric field and a magnetic field, and propagate at the speed of light through a vacuum. 

Characterized by their frequency of oscillation as they propagate, or by their wavelength, 

EM waves are divided into distinct categories as shown in Table 1 (Knight, 2013). Radar 

systems are one of the remote sensing technologies that rely on EM waves, more 

specifically microwaves (Table 1), to perform measurements. 

Radar systems are either monostatic or bistatic. Monostatic radar systems use an 

antenna to transmit microwaves, which propagate in the environment until they reach a 

target (water droplets, planes, trees, etc.). Some microwaves reflect and scatter back 

towards the antenna, which receives these reflected/scattered EM waves from the target, 

forcing the antenna to switch between transmitting and receiving EM waves on the scales 

of microseconds. Many studies have investigated propagation effects using monostatic 

radar and use the measurements to invert for the refractive environment (Karimian et. al., 

2011; Yardim et. al., 2009; Yardim et. al., 2006; Gerstoft et al., 2003; Rogers et al., 2000). 

These studies have primarily examined sea clutter, which are EM waves that are reflected 

and scattered from the sea surface, to estimate the environment. In contrast, a bi-static 

system has separate transmitting and receiving sites, allowing large distances between the 
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transmitting and receiving units; an object/target to reflect or scatter EM waves is not 

needed. Bi-static systems have also been used to estimate the environment (Gerstoft et al., 

2000; Zhao, 2012; Wagner et al., 2016; Penton and Hackett, 2018; Matsko and Hackett, 

2019) with the advantage of not needing an accurate means of estimating the reflection and 

scattering off of an object. 

Earth’s environment affects microwave propagation through processes such as 

forward scattering, reflection, attenuation, and refraction. Forward scattering occurs when 

microwaves propagate into particles or surfaces, and primarily occur in interaction with the 

rough ocean surface. Reflection resulting in multipath occurs when microwaves are 

reflected from Earth’s surface and cause interference patterns between EM waves on 

reflected and direct paths. Attenuation, which is caused by absorption of energy by gas 

molecules in the air, also occurs and leads to a reduction in intensity of the microwaves as 

they traverse the atmosphere. Lastly, refraction, which is caused by variation in the 

composition of the atmosphere’s medium, causes changes in microwaves’ direction of 

propagation. Refraction can affect radar systems by altering the maximum range of the 

radar or by creating “holes” in the coverage (Skolnik, 1990). 

Bi-static radar systems often operate in the MABL. Garrat (1992) defines an 

atmospheric boundary layer as “the layer of air directly above the earth’s surface in which 

the effects of a surface are felt directly on time scales less than a day.” In the MABL, the 

surface is the unsteady ocean surface, at which significant turbulent transport and exchange 

of heat, mass, and momentum between the air and the sea occur. The aforementioned 

interactions are complex and make studying this environment difficult; however, knowing 

how this environment affects the propagation of microwaves is important for understanding 
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radar system performance. For X-band microwave propagation, the largest environmental 

effects are refraction and multipath (Skolnik, 1990). 

2.2 Atmospheric Refractivity 

Refraction is the deviation of the direction of wave propagation caused by 

variations in the medium where the wave propagates. The refractive properties of a medium 

are characterized by the index of refraction, which is the ratio between the velocity of an 

EM wave in a vacuum (c) and the velocity in the medium (v) in question: 

 𝑛 =  
𝑐

𝑣
 (1) 

Free space (or a vacuum) has n = 1, while all other materials have n > 1. For air, 

atmospheric refractivity (N) is used instead of the index of refraction because n of air is 

only slightly greater than one. A relationship, derived by Bean and Dutton (1968), relates 

N to temperature in Kelvin (T), barometric pressure in millibars (p), and partial pressure of 

water vapor in millibars (𝑒𝑝): 

 𝑁 = (𝑛 − 1)  × 106 = 
77.6

𝑇
𝑝 +

373256𝑒𝑝
𝑇2

 (2) 

refractivity is unitless, but will be referred to as N-units for clarity. 

Normal refractive environments occur when the refractive gradient with respect to 

height (
𝑑𝑁

𝑑𝑧
) is between 0 and -79 N-units/km. Subrefractive environments occur when 

𝑑𝑁

𝑑𝑧
 

> 0. An increasing gradient can cause the maximum detection range of a radar system to 

be reduced because the propagation path bends away from Earth’s surface. Lastly, super 

refractive environments occur when 
𝑑𝑁

𝑑𝑧
 < -79 N-units/km. Super-refraction causes the 
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propagation path to potentially follow the curvature of the earth which, in turn, can increase 

the detection range beyond the radar horizon (Skolnik, 1990).   

Ducting, a sub-category of super refraction, causes the propagation path of 

microwaves to bend toward the earth’s surface. More specifically, ducting occurs when 
𝑑𝑁

𝑑𝑧
 

< -157 N-units/m. If 
𝑑𝑁

𝑑𝑧
 = -157 N-units/m, then the propagation follows the curvature of 

the earth, while lower values cause EM waves to bend directly towards the surface.  In 

order to account for the curvature of the earth and easily identify ducting conditions, 

modified refractivity is defined:  

 𝑀 = 𝑁 + (
𝑧

𝑅𝑒
)  × 106 (3) 

where Re is the radius of the earth and 𝑧 is altitude. Ducting conditions are identified as 
𝑑𝑀

𝑑𝑧
  

< 0 and the duct height is the altitude where 
𝑑𝑀

𝑑𝑧
 = 0. Similar to N, modified refractivity is 

unitless, but will be referred to as M-units for clarity. Being a subcategory of super 

refraction, ducting increases the range of detection beyond the radar horizon. However, in 

many situations ducting scenarios cause the microwaves to be trapped near the earth 

leaving “holes” in the radar coverage at higher altitudes (Skolnik, 1990).  A lack of 

awareness of these enhanced/reduced detection ranges can lead to positioning errors. 

2.3 Types of Ducts 

Three distinct types of ducts affect microwave propagation: surface ducts, elevated 

ducts, and combination ducts. Each type of duct can be classified based on modified 

refractivity (M) at the surface (M0), and M at the top of the trapping layer (Mt). The trapping 

layer is a range of altitudes identified by decreasing modified refractivity with height (
𝑑𝑀

𝑑𝑧
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< 0). Surface ducts are classified by M0 > Mt, elevated ducts are classified by M0 < Mt, and 

combination ducts are those in which both elevated and surface ducts exist simultaneously. 

All types of ducts are exemplified in Figure 1. Ducts are typically formed by temperature 

inversions and evaporative processes that take place within the trapping regions of each 

type of duct illustrated in Figure 1 (Skolnik, 1990; see section 2.4).  

Three types of surface ducts are known to exist: surface-based, elevated, and 

evaporation ducts. Surface based ducts, are surface ducts whose trapping layer begins at 

the surface, whereas elevated surface ducts are surface ducts whose trapping layer begins 

above the surface. Both elevated and surface based surface ducts are temperature driven. 

Evaporation ducts, however, are surface based ducts that are humidity driven, and 

categorized by a rapid decrease in humidity with height (Skolnik, 1990). Examples of each 

type of surface duct are shown in Figure 2. 

2.4 Meteorological Causes of Ducting 

Temperature inversions and evaporative processes create ducting scenarios. A 

temperature inversion is an increase in temperature with altitude, as opposed to the typical 

atmospheric conditions where temperature decreases with altitude. Common causes of 

temperature inversions include radiative effects, flow advective conditions, diverging 

downdrafts of air, and large-scale subsidence (Markowski and Richardson, 2010).  

An example of a temperature inversion caused by radiative effects is observed on 

clear nights. During nighttime hours the ground is cooled as earth releases more longwave 

radiation into the atmosphere than shortwave solar radiation is received. The cool air just 

above the ground results in the air above the surface being warmer than the air close to the 

surface, thus producing a temperature inversion. 
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Temperature inversions also occur due to flow advection. Advection of temperature 

refers to a change in temperature caused by movement of air, or wind. Sea/land breezes 

and fronts are examples of processes caused by flow advection that can lead to temperature 

inversions. Sea/land breezes are caused by temperature contrasts, which develop due to the 

differences of heat capacity between land and water, and are frequently present in coastal 

environments. During the day, more heating takes place on land due to its lower heat 

capacity. The heating generated over the land creates a thermal circulation cell that advects 

the cooler air from the water onto land. The product of this circulation is known as a sea 

breeze. The sea breeze’s counterpart, the land breeze, is caused by a nighttime cooling of 

the land, which generates a similar thermal circulation that advects the cooler air from the 

land under the warmer, less dense air over the water. Land breezes generate temperature 

inversions in areas over the water, while sea breezes generate temperature inversions in 

areas over the land. Synoptic fronts such as cold fronts, warm fronts, and occluded fronts 

also bring in conditions where temperature inversions are favorable. Fronts are boundaries, 

which separate two masses of air of different densities.  Cold fronts are boundaries where 

cold air is approaching warm air, and warm fronts are boundaries where warm air is 

approaching cold air. As either of these frontal systems move through, temperature 

inversions are likely to ensue as warm air aloft quickly advances over the cold dense air at 

the surface. Also, diverging downdrafts of air underneath thunderstorms produce 

temperature inversions because of the cold air that spreads out from the thunderstorm’s 

base (Skolnik 1990).  

Another frequent cause of temperature inversions is large-scale subsidence that 

meets low-level maritime air. The general sinking of air causes compression, which results 
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in adiabatic heating and a decrease in moisture content. This process leads to warmer, drier 

air lying above cooler, moist air and produces a temperature inversion. More often than 

not, large-scale subsidence occurs in the trade wind regions, and while these effects can 

produce surface ducts, they typically also cause elevated ducts along the marine boundary 

layer (Skolnik, 1990).  

Evaporation over bodies of water can also lead to surface duct formation. 

Evaporation is a process of vaporization where liquid water is transformed to a gaseous 

state. As evaporation takes place at the surface of a body of water, the air in contact with 

the sea surface is saturated with water vapor but as height above the surface increases the 

amount of water content decreases. The decrease in partial vapor pressure, 𝑒𝑝 (Equation 

2), causes a steep decrease in the modified refractivity near the surface.  Evaporation ducts 

are the most common type of surface duct in marine environments (Babin, 1996; Babin et 

al., 1997) and are a nearly permanent worldwide feature in oceanic regions (Skolnik, 1990). 

2.5 Horizontally Heterogeneous Refractivity Environments 

Although variations in refractivity with height are known to be much more 

significant than variations in horizontal directions, prior research has shown that horizontal 

variations can also cause significant effects on propagation (Bean and Cahoon, 1959; 

Goldhirsh and Dockery, 1998; Brooks et. al., 1999). Currently, most studies assume a 

horizontally homogeneous refractivity environment, where a single profile of refractivity 

with respect to height is assumed to be consistent throughout an entire horizontal domain. 

However, refractive environments and duct heights can change in the horizontal directions 

due to horizontal variations of T, 𝑒𝑝, and p, which commonly occur at air/mass boundaries 

associated with cyclones, land/ocean interfaces, coastal zones, sea surface temperature 
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gradients, clouds, thunderstorm anvil shadows, and heavy rainfall (Markowski and 

Richardson, 2010). Figure 3 illustrates examples of a homogeneous refractivity 

environment (Figure 3a) and a heterogeneous refractive environment (Figure 3b).  

A study by Bean and Cahoon (1959) suggests that 1km above the surface, 

horizontal changes appear to have little effect on the propagation; however, they show that 

microwaves emitted at low elevation angles are sensitive to extreme horizontal variations 

of atmospheric conditions near the surface. Goldhirsh and Dockery (1998) demonstrate 

that while the homogeneity assumption gives miniscule errors at small scales and ranges, 

errors at long ranges (>30 km) are significantly larger. Brooks et al. (1999) shows that large 

differences in radar wave propagation behavior are found when comparing environments 

which assume homogeneous refractivity with in-situ measured propagation, indicating that 

a heterogeneous environment may be necessary to accurately assess these environments. 

Also, variations associated with the physical processes previously described have also been 

shown to affect radar wave propagation such as sea breeze/land breeze circulations 

(Atkinson and Li, 2000), as well as land/ocean interfaces (Brooks, 2001). 

2.6 Modeling Evaporation Ducts 

Currently, three primary methods are used for estimating an evaporative ducting 

environment. First, similarity functions, i.e., MO boundary layer similarity theory, can be 

used to predict evaporation ducts using bulk environmental methods (Foken, 2006). MO 

theory has several shortcomings, and can result in inaccurate predictions in unstable 

environments such as those with high ocean surface wave energy, or heterogeneous 

environments of T, 𝑒𝑝, or p (Hill, 1989). Second, numerical weather prediction models 

such as COAMPS® can be used to estimate evaporative ducting conditions (Hodur, 1997). 
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NWP models simulate environmental conditions by using atmospheric or oceanic 

measurements as initial boundary conditions, and applying these conditions to solve the 

unsteady Navier-Stokes partial differential equations. While NWP models produce 

consistent, easy to work with output for analysis, a shortcoming of NWP models is that the 

spatial resolution is coarse especially in the vertical direction, with the finer resolution 

models approaching 4 kilometer horizontal resolution, and ~15 m vertical resolution, 

making small scale processes difficult to replicate (Yano, 2018). Last, to overcome the 

limitations of the above approaches and provide a secondary option when direct 

measurements of the atmosphere are not feasible, inversion methods of estimating the 

environment are continuously evolving (Karimian et. al., 2011). Inversion methods use in-

situ radar measurements along with radar wave propagation models, and machine learning 

techniques to inversely predict refractivity. Inversion methods are particularly attractive 

because in-situ acquisition of radar data is relatively simple and radar waves cover large 

areas but are affected by processes down to the wavelength of the radar wave (order 

centimeters for X-band). However, in order to ensure the existence of unique repeatable 

accurate solutions from inversion methods, the refractivity must be described using a 

limited set of parameters and the inversion must use an appropriate amount of radar data 

(Saeger et al., 2015; Matsko and Hackett, 2019). Inversion methods typically estimate 

parameters of parametric refractivity models that are then used to generate refractivity 

vertical profiles. Thus, inversion methods are limited by the parametric refractivity model 

used to characterize refractivity in evaporative ducting environments. 

Many parametric models have been developed to parameterize modified 

refractivity profiles in evaporative ducting conditions, namely the Paulus-Jeske 
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evaporation duct model (Paulus 1985, 1990) and the Stacked model (Gerstoft et al. 2003). 

Saeger et al. (2015) compares the performance of these models, and shows that the best log 

linear model formulation for an inversion problem is a two-layer stacked model that 

contains at least three parameters: duct height, duct curvature, and a mixed layer slope. 

Penton and Hackett (2018) use such a model: 

 

𝑀(𝑧) =  𝑀0 + {
𝑐0 (𝑧 − 𝑧𝑑  ln (

𝑧 + 0.00015

0.00015
)) ,        𝑧 ≤ 𝑧𝑙 

𝑚1𝑧 − 𝑀1                                  , 𝑧 >  𝑧𝑙

} (4) 

where 𝑧𝑑is evaporation duct height, 𝑚1 is mixed layer slope, 𝑐0 is the potential refractivity 

gradient (or duct curvature), 𝑧𝑙 is the evaporation layer which is defined as 2𝑧𝑑, and  

𝑀1  ensures continuity between the two layers (i.e., this is not a free parameter but a 

function of the other parameters). Figure 4 illustrates an example modified refractivity 

profile described by Equation 4. In most inversion approaches, a single refractivity profile 

is assumed to be homogeneous in range. However, many studies have also shown that true 

environments are rarely homogeneous (Bean and Cahoon, 1959; Goldhirsh and Dockery, 

1998; Brooks et. al., 1999; Atkinson and Li, 2000; Brooks, 2001) implying that parametric 

models used to solve inversion problems should parameterize heterogeneous 

environments. Gerstoft et. al. (2003) attempts to model a heterogeneous refractivity 

environment using five parameters for the vertical structure, and six parameters for the 

horizontal structure, and found that the parameters were able to model the environment 

well within the trapping layer of the duct, but not above the trapping layer.  Other 

approaches to inversely determine heterogeneous refractivity environments have included 

using Markov chain Monte Carlo (MCMC) sampling approaches (Yardim et al. 2006) and, 
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more recently, the use of adjoint methods (Zhao et. al. 2011; Zhao and Huang, 2012, 2014; 

Zhao et al., 2017).   
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Table 1. Different categories of electromagnetic waves and their associated frequency 

range and wavelengths. 

Name Frequency (Hz) Wavelength (m) 

AM Radio 106 – 108 3-300 

FM Radio/ TV 108 – 1010 0.03-3 

Microwaves 1010 – 1012 3 x 10-4 – 0.03 

Infrared 1012 – 1014 3 x 10-6 – 3 x 10-4 

Visible Light 1014 – 1015 7 x 10-7 – 4 x 10-7 

Ultraviolet 1015 – 1017 3 x 10-10 – 3 x 10-8 

X-Rays 1018 – 1020 3 x 10-12 – 3 x 10-10 

Gamma Rays ≥1020 ≤3 x 10-12 
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Figure 1. Modified refractivity profiles in surface ducting conditions (a), elevated ducting 

conditions (b), combination duct conditions (c), and normal atmospheric (non-ducting) 

conditions (d). 
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Figure 2. Modified refractivity profiles of a surface-based duct with a surface trapping 

layer (a), an elevated surface duct with a trapping layer beginning above the surface (b), 

and a humidity-driven evaporation duct (c). 
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Figure 3. Examples of a horizontally homogeneous refractivity environment (a) and 

horizontally heterogeneous refractivity environment (b). 
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Figure 4. A modified refractivity profile illustrated via parametric refractivity model used 

by Penton and Hackett (2018).    
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3.0 Research Objective 

The objective of the current study is to investigate range-dependent variations of 

modified refractivity, duct heights, and refractivity gradients in order to develop a range-

dependent parametric model to enhance refractivity predictions utilizing inversion 

techniques. Range variations of modified refractivity and associated parameters are 

explored using numerical data to develop the range-dependent parametric model.  The 

developed range-dependent parametric model is evaluated by comparing its estimates of 

modified refractivity and associated PL to those from numerical data. These comparisons 

allow assessment of the accuracy of the parametric model and evaluation of whether a 

single parametric model can accurately represent horizontally heterogeneous vertical 

refractivity distributions. The parametric model’s parameters can be approximated using 

inversion methods enabling estimation of heterogeneous refractivity environments 

utilizing in-situ radar propagation measurements without information from NWP models 

or atmospheric measurements. 
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4.0 Methods 

To address the research objective, a blend of numerical weather prediction data and 

surface layer models which utilize MO theory, are considered to investigate changes in 

refractive attributes over range. The data sources are described in section 4.1. Refractive 

environments from the data sources are used to simulate radar wave propagation, which is 

used to evaluate which range variations of refractive attributes impact propagation most. 

The application of refractive environments to the propagation model is described in section 

4.2. Changes in refractive attributes over range are examined for all data sources to identify 

potential functional forms that accurately describe variations of each variable in range that 

affect propagation. The methods for characterization of variations are described in section 

4.3. Typical functional forms are used to develop a range-dependent parametric model. 

Refractive environments produced by the proposed parametric model are evaluated using 

methods outlined in section 4.4.  

4.1 Data Sources  

A plethora of data from the Coupled Air-Sea Processes and Electromagnetic 

Ducting Research (CASPER) project, sponsored by the Office of Naval Research (ONR) 

Multi-University Research Initiative (MURI) is utilized in this study. The CASPER project 

aimed to better quantify atmospheric and oceanic effects on the propagation of radar and 

communication signals in the marine environment (Wang et al., 2018). Two major field 

campaigns were included in the CASPER project: CASPER-East and CASPER-West. Data 
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gathered from the former campaign (CASPER-East) is investigated since its focus was to 

assess the effects of heterogeneous marine environments on EM propagation and 

quantifying uncertainties in evaporation duct modeling. CASPER-East measurements were 

taken offshore of Duck, North Carolina (NC) between October 12 and November 6, 2015. 

Duck was the premier choice of location for CASPER-East due to the Gulf Stream’s 

influence on sea surface temperature (SST) and salinity variabilities that drive 

heterogeneous refractivity environments (Wang et al., 2018).  The CASPER-East data 

includes repeated tethered balloon measurements, time-averaged meteorological data taken 

aboard research vessels (R/V), and NWP forecasts. 

Repeated tethered balloon measurements made from small crafts outside the areal 

effects of the larger vessels throughout the CASPER-East campaign measure evaporation 

ducts. These evaporation ducting refractivity profiles are generated from a “cloud” of data 

captured by the balloons to generate mean refractivity profiles (Kang and Wang, 2016). 

These mean profiles are exemplified in Figure 5.  

Time-averaged meteorological data – referred to as bulk data – from the CASPER-

East field campaign can also be used to estimate evaporation ducts. More specifically, bulk 

measurements are used in the COARE 3.0 boundary layer model (Fairall et al., 1996; 

Fairall et al., 2003). In order to estimate temperature, humidity, and wind profiles, COARE 

requires reference height estimations of wind speed, specific humidity, and temperature 

along with sea-surface measurements of temperature, specific humidity, and wave 

characteristics (significant wave height and peak wavenumber). These parameters are 

obtained from instruments located on the R/V Sharp and Duck pier. Temperature, wind 

speed, and specific humidity at a reference height of 12 meters is used for R/V Sharp 
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COARE predictions, and at the measurement closest to 10 meters for the pier-based 

COARE predictions. Specific humidity at the surface is estimated assuming 98% relative 

humidity and using a saturation value based on the SST (Buck, 1981). R/V Sharp COARE 

predictions use an estimated SST taken aboard the R/V Sharp, while pier-based COARE 

predictions use a measured SST from a second ship (R/V Atlantic Explorer). Sea surface 

significant wave height and peak wavenumber are obtained from one of five mini wave 

buoys in the vicinity of the other measurements (Kammerer and Hackett, 2017; Wang et 

al., 2018). 1D wave spectra every 30 minutes are measured by the buoy and the spectra 

closest in time by the buoy located nearest to the respective measurements is used to 

estimate significant wave height and peak wavenumber. Sample time series of the average 

quantities used as input for the COARE 3.0 algorithm are shown in Figure 6, and sample 

refractivity profiles based-on the COARE 3.0 algorithm are illustrated in Figure 7. The 

GPS position of the ship over time is used to convert the time series of refractivity profiles 

to range distributions. 

Numerical weather prediction data throughout the CASPER-East campaign also 

estimates evaporation ducts and is the primary dataset utilized in this study. CASPER-East 

NWP data blends a coupled ocean-atmosphere model with a surface layer model. Coupled 

model data is integral for this study because evaporation ducts are a coupled atmospheric-

oceanic phenomenon (Skolnik, 1990). This data is particularly useful for this study because 

it allows an instantaneous assessment of an environment, has broad spatial coverage, the 

finest (~2.04 km) horizontal resolution of any data set investigated in CASPER-East, and 

fine (~0.1 m) vertical resolution which is needed to identify evaporation ducts. 
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 The Coupled Ocean/Atmosphere Mesoscale Prediction System (COAMPS®) is the 

coupled ocean-atmosphere NWP model (Hodur, 1997) developed by the Naval Research 

Laboratory (NRL) and utilized during CASPER-East. COAMPS® predicts mesoscale 

atmospheric phenomena, and includes an atmospheric data assimilation system comprised 

of data quality control, analysis, and initialization. COAMPS® contains a nonhydrostatic 

atmospheric model as well as a hydrostatic ocean model (Hodur, 1997). The initial 

boundary conditions are estimated from the Naval Operational Global Atmospheric 

Prediction System (NOGAPS; Hogan and Rosmond, 1991; Peng et al., 2004). COAMPS® 

forecasts for this study use a 3rd level nested grid having horizontal resolution of 

approximately 2 km and are cross shore transects from Duck Pier (North Carolina; 

36.18°N, 284.27°E) to 60 km offshore. Seventy-one levels are distributed vertically 

between 4m and 4000 m, and 6 levels reside in the lowest 100 meters. Since this vertical 

resolution is insufficient for resolving evaporation ducts, the COAMPS® forecasts are 

blended with the Navy Atmospheric Vertical Surface Layer Model (NAVSLaM; 

Frederickson, 2016), to increase accuracy and resolution in the lowest 100 m (Karimian et 

al., 2013).  

 NAVSLaM characterizes near surface radio-frequency refractivity over the ocean 

using algorithms based on MO-theory (section 2.5) to simulate air-sea fluxes and near-

surface profiles of temperature and humidity (Frederickson, 2016). The COAMPS®-

NAVSLaM blended forecasts have decimeter vertical resolution in the lowest 100 m of 

altitude above the sea surface. Examples of horizontally heterogeneous refractivity vertical 

profiles from blended COAMPS®-NAVSLaM forecasts are shown in Figure 8.  
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COAMPS®-NAVSLaM blended forecasts used in this study estimate conditions 

off the coast of Duck, NC during the CASPER-East field campaign. These data include 

648 forecasts which span a period of time and space where frontal boundaries, coastal 

zones, horizontal changes in sea surface temperatures caused by the Gulf Stream, clouds, 

thunderstorms, and heavy rainfall lead to heterogeneous refractive environments. Events 

such as these that took place during the campaign were recorded by Wang et al. (2018). 

Furthermore, these data contain a wide range of atmospheric stability environments, as 

illustrated by gradient Richardson number in Figure 9 (see Section 4.3 for gradient 

Richardson number definition and stability categorization).   

 Since COAMPS®-NAVSLaM blended data inherently contains assumptions, other 

CASPER-East data sources are used to verify variations of COAMPS®-NAVSLaM 

blended data. Mean refractivity profiles from tethered balloon data along with refractivity 

profiles from the COARE algorithm throughout the entire CASPER-East experiment are 

examined in conjunction with closest time-stamped COAMPS®-NAVSLaM blended 

forecasts to investigate discrepancies between the data sources. Figure 10 shows three 

respective environments which contain modified refractivity estimates using COAMPS®-

NAVSLaM blended data, mean profiles from tethered balloon data, and environments 

generated using the COARE algorithm and bulk atmospheric measurements. This figure 

illustrates both consistencies and inconsistencies between the various modified refractivity 

estimates. Figure 10a is an example of how modified refractivity with respect to height 

over all ranges and all data sources are consistent, while Figure 10b shows inconsistencies 

between the blended data and tethered balloon measurements, and Figure 10c shows 

inconsistencies between the blended data and COARE estimations. 368 COARE-based 
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modified refractivity profiles from both the pier and research vessel coincide with 

COAMPS®-NAVSLaM blended modified refractivity forecasts. Although magnitudes of 

modified refractivity are typically quite different, a majority of modified refractivity 

profiles show similar refractivity gradients with respect to height (dM/dz). 319 of 368 

(97%) COARE-estimated modified refractivity profiles from R/V data show similar 

refractivity gradients, and 303 of 368 (92%) COARE-estimated modified refractivity 

profiles from the pier show similar refractivity gradients with height. Mean refractivity 

profiles calculated using tethered balloon data coincide with 36 of the 648 COAMPS®-

NAVSLaM blended forecasts. Of these 36 mean refractivity profiles, 29 (80%) show 

similar refractivity gradients with height to the COAMPS®-NAVSLaM blended forecasts. 

Thus, measured data from CASPER-East largely verifies the accuracy of the COAMPS®-

NAVSLaM blended data used to analyze refractive characteristics in range for this study. 

Further discussion of the differences between these estimates of refractivity during the 

Casper-East experiment is included in Pastore et al. (2020).  

4.2 EM Propagation Modeling 

 While the data described in the previous section is used to describe the atmospheric 

conditions, the developed parametric model will ultimately be of best utility if it accurately 

predicts propagation.  EM propagation is simulated using the Variable Terrain Radiowave 

Parabolic Equation model (VTRPE; Ryan, 1991). VTRPE computes EM wave propagation 

in complicated environments, including the MABL (Ryan, 1991) using the parabolic 

equation approximation to predict electromagnetic fields (Sirkova, 2012). VTRPE uses a 

cylindrical earth-based coordinate system to solve the parabolic wave equation 
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implemented using a split-step Fourier method. VTRPE is used in this study to simulate 

the propagation factor:  

 𝑃𝑓 = 20 log |
𝑬

𝑬𝟎
| (5) 

where 𝑬 is the electric field in the modeled environment, and 𝑬𝟎 is the electric field in free 

space propagation conditions, and the propagation loss is:  

 𝑃𝐿 = 20 log(2𝑘𝑜𝑟) − 𝑃𝑓 (6) 

where 𝑘𝑜 is the wavenumber of the electromagnetic wave and 𝑟 is range (Ryan, 1991). The 

VTRPE model requires specification of the antenna properties, domain, sea state 

parameters, and atmospheric refractivity. For this study, propagation patterns generated 

utilizing a developed range-dependent parametric model are compared to those generated 

using COAMPS®-NAVSLaM blended data to evaluate the accuracy of the modeled 

refractive environment (i.e., the developed parametric model) in terms of propagation 

prediction. This study investigates propagation over a smooth sea surface, and an antenna 

transmitting at an altitude of 15.6 m at 9GHz with a beam width of 15° and horizontal 

polarization. Figure 11 shows an example of a horizontally heterogeneous refractivity 

environment through the use of vertical profiles as well as a range-averaged vertical profile. 

Figure 12 shows the resulting propagation patterns for the mean profile illustrated in Figure 

11, the range-dependent refractivity environment from Figure 11, and a single profile at a 

range (r) of 0 km (Figure 11), which is assumed homogenous over range. Clearly, the 

different refractivity environments (i.e., homogenous vs. heterogeneous) have a substantial 

impact on the propagation with propagation losses being significantly lower at long range 

in the range-dependent refractive environment (Figure 12b). 
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4.3 Methods for Characterizing Variations of Refractive Attributes Over Range  

In order to ascertain which variables should be considered for a range-dependent 

parametric model, methods of visual inspection, standard deviation, and fast-Fourier 

transforms are performed on the variations of refractive attributes over range. Typical 

variations in range and their effects on radar wave propagation are investigated to 

determine which variations cause more dramatic impacts on radar wave propagation. 

Furthermore, variations are examined with respect to the stability of the environment, 

which is evaluated using gradient Richardson number, and correlation coefficients between 

stability and refractive attributes in range to ascertain if certain variations are more likely 

associated with stable, unstable, or free convective stability regimes.  

 Standard deviations for a variety of variables with respect to range are calculated 

using the following equation: 

 

𝜎𝑥 = √
∑ (𝑥𝑖 − 𝑥̅)

2𝑛𝑥𝑟
𝑖=1

𝑛𝑥𝑟 − 1
 (7) 

where 𝑛𝑥𝑟 is the number of data points in range, xr is a refractive attribute analyzed with 

respect to range (e.g., modified refractivity, duct height, etc.), and 𝑥̅ is the mean of that 

respective variable over range. Since standard deviations vary with altitude they are 

calculated for each altitude. The standard deviations along with visual inspection are used 

to determine simplistic functional forms which may accurately model these range-

dependent variations.  

 In cases where variations are oscillatory, signals of the variable over range are 

investigated using fast-Fourier transforms (FFTs) to determine the length scales which 
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attribute the most variance to the signal. The variables are de-trended in range by removing 

the best (least squares) straight-line or linear trend in order to remove any large scale 

variations that aren’t resolved by the data. Then, an FFT is used to calculate the power 

spectral density (PSD) on the de-trended data: 

 
𝑆 =  

2|𝑥𝑓|
2

𝑛𝑥𝑟∆𝑟
 (8) 

where ∆𝑟 is the sampling interval (2.04 km) and 𝑥𝑓 are (one-sided) Fourier coefficients. 

These data allow for length scales between 4.08 km and 63 km to be resolved. For 

variations which are also altitude dependent, PSDs are calculated for each altitude. The 

PSDs are also investigated with respect to atmospheric stability to determine whether 

certain length scales dominate in stable, unstable, or free convective stability scenarios. 

The atmospheric stability is examined via the gradient Richardson number:  

 𝑅𝑖(𝑧, 𝑟) =  

𝑔
𝑇𝑣
 
𝜕𝜃𝑣(𝑧, 𝑟)
𝜕𝑧

(
𝜕𝑈(𝑧, 𝑟)
𝜕𝑧

)
2

+ (
𝜕𝑉(𝑧, 𝑟)
𝜕𝑧

)
2 (9) 

where 𝑔 is gravitational acceleration, 𝜃𝑣 is virtual potential temperature, 𝑇𝑣 is the average 

virtual temperature over all altitudes between the surface and 5 meters above the surface, 

and U and V are the wind components towards the east and north, respectively. 𝑅𝑖 is 

calculated at each altitude from the surface (z = 0 m) to a reference height of z = 5 m and 

at each range. The reference height of 5 meters is chosen based-on Hansen (1967) which 

states that a reference height between 3-6 meters above the surface provides the best 

estimate of Richardson number in respect to the energy balance of the air-earth interface. 

𝑅𝑖(𝑧, 𝑟) is utilized to investigate how stability relates to frequently seen functional forms 
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with respect to range, and to discern relationships between stability and other range-varying 

variables. To investigate how stability relates to functional forms, sometimes an average 

gradient Richardson number is used by either averaging 𝑅𝑖(𝑧, 𝑟) over both range and 

altitude (𝑅𝑖̅̅̅), or averaging only over altitude (𝑅𝑖̅̅̅(𝑟)). Stability environments are defined as 

stable if 𝑅𝑖 > 0, unstable if 0 > 𝑅𝑖 > -2, and free convective if 𝑅𝑖 ≤ -2.  

In order to determine relationships between many variables in this study correlation 

coefficients are computed: 

 
𝐶𝑥𝑦 = 

∑ (𝑥𝑖 − 𝑥̅)(𝑦𝑖 − 𝑦̅ )
𝑛𝑥𝑟
𝑖=1

(𝑛𝑥𝑟 − 1)(𝜎𝑥𝜎𝑦)
 (10) 

where 𝑦 is another variable which varies in range, 𝜎𝑦 is the standard deviation of 𝑦, and 𝑦̅ 

is the average of 𝑦 over range. Correlation coefficients are used to find direct or indirect 

relationships between atmospheric stability and various range-dependent variables as well 

as evaluate discrepancies between the developed parametric model and the COAMPS®-

NAVSLaM blended data.  

4.4 Range-Dependent Parametric Model Evaluation Methods 

 The functional forms investigated to model range-dependent refractive 

environments are evaluated using either linear or non-linear least squares regression.  

Regressions fit a variety of different equations based on functional behaviors of duct height 

and refractive gradients with respect to range, as well as refractive gradients with respect 

to altitude. RMSEs between a data variable from COAMPS®-NAVSLaM blended profiles 

and the fit of the same variable are calculated: 
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𝛼𝑥 = √
1

𝑛𝑥𝑟
∑(𝑥𝑖 − 𝑥𝑖̂)

2

𝑛𝑥𝑟

𝑖=1

 (11) 

where 𝑥𝑖̂ represents the fit of the estimated variable at each range using linear or nonlinear 

least squares regression.  

In some cases, it is difficult to determine the accuracy based on 𝛼𝑥 alone because 

values of the respective variable may vary up to 2 orders of magnitude. This large variance 

makes it difficult to compare 𝛼𝑥 to typical values of the respective variable. Thus, a percent 

error in decimal form is calculated using 𝛼𝑥 and the mean of the respective variable over 

range and/or altitude (𝜇𝑥): 

 𝐸 =  
𝛼𝑥
|𝜇𝑥|

 (12) 

The range-dependent parametric model developed in this study is evaluated through 

comparisons of range-dependent M profiles and associated simulated propagation loss. 

Range-dependent M profiles generated through the use of the parametric model are 

compared to range-dependent COAMPS®-NAVSLaM blended M profiles by calculating 

residuals and RMSEs between the two M profiles. Residual of the modified refractivity is 

calculated: 

 𝛽𝑀(𝑟, 𝑧) =  𝑀(𝑟, 𝑧) − 𝑀̂(𝑟, 𝑧) (13) 

where 𝑀(𝑟, 𝑧) represents modified refractivity from a data source, and 𝑀̂(𝑟, 𝑧) represents 

modified refractivity calculated using the developed parametric model. The RMSE is 

calculated: 
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𝛼𝑀 = √
1

𝑛𝑀
∑(𝛽𝑀(𝑟, 𝑧))

2

𝑛𝑀

𝑖=1

 (14) 

where 𝑛𝑀 is the number of modified refractivity measurements over range and height. 

Histograms of the residuals and RMSEs are generated for range-dependent refractivity 

profiles for all COAMPS®-NAVSLaM blended data sets, which contain only evaporation 

ducts, to determine how optimally the proposed parametric model reproduces refractivity. 

𝛽𝑀(𝑟, 𝑧) spatial distributions are used to identify the location of errors, which determine 

where, in space, the range-dependent parametric model performs well and where it 

performs poorly.  Furthermore, correlation coefficients are calculated between 𝛼𝑀 and 

each 𝛼𝑥. 

Simulated propagation loss patterns generated from refractivity based on the 

parametric model and those generated using the data sources are compared by analyzing 

the residuals and RMSEs of the propagation loss. These propagation loss metrics identify 

which regions of the propagation pattern differ between PL produced by the refractivity 

data relative to PL based on refractivity via the parametric model. Residuals of propagation 

loss patterns are calculated similarly as the modified refractivity residuals: 

 𝛽𝑃𝐿(𝑟, 𝑧) =  𝑃𝐿(𝑟, 𝑧) − 𝑃𝐿̂(𝑟, 𝑧) (15) 

where 𝑃𝐿(𝑟, 𝑧) is the propagation loss simulated using the data source refractivity profiles 

and 𝑃𝐿̂(𝑟, 𝑧) is propagation loss simulated using the developed parametric refractivity 

model. RMSE for propagation loss patterns is calculated:  
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𝛼𝑃𝐿 = √
1

𝑛𝑃𝐿
∑(𝛽𝑃𝐿(𝑟, 𝑧))

2

𝑛𝑃𝐿

𝑖=1

 (16) 

where 𝑛𝑃𝐿 is the number of propagation loss data points over range and height. Histograms 

of the residuals and RMSEs are generated for propagation loss environments for all 

COAMPS®-NAVSLaM blended profiles to evaluate the accuracy of the parametric model. 

The histograms are used to identify how frequently the parametric model accurately 

reproduces the propagation. 𝛽𝑃𝐿(𝑟, 𝑧) spatial distributions are used to identify the location 

of errors, which can determine where, in space, propagation predictions differ most.   

Thus, performance of the parametric model is assessed based on errors of functional 

forms used to model refractivity environments using 𝛼𝑥, 𝐸, 𝛽𝑀 and 𝛼𝑀, as well as the 

associated propagation loss predictions from VTRPE using 𝛽𝑃𝐿 and 𝛼𝑃𝐿. These metrics 

allow discussion on the developed parametric model’s strengths and weaknesses.  
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Figure 5. Modified refractivity from tethered balloon temperature and humidity 

measurements collected on October 20, 2015 at 13:41:52 UTC. Two mean refractivity 

profiles are shown. The blue line shows a mean profile based-on a least squares fit to a 

seventh degree polynomial performed by Kang and Wang (2016), and the red line shows a 

mean profile based-on a least squares fit to the parametric model described by Equation 4. 
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Figure 6. Example of bulk measurements used to estimate range-dependent modified 

refractivity environments using the COARE 3.0 algorithm for October 20, 2015 starting at 

13:41:52 UTC during the CASPER-East campaign. Times series are shown for a) sea 

surface temperature (SST), b) air temperature 10 meters above the ocean surface (T), c) 

atmospheric pressure at 12 meters above the ocean surface (p), d) and e) show the 

horizontal components of wind speed (U, V), and f) shows the mixing ratio at 12 meters 

above the ocean surface (w). 
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Figure 7. Modified refractivity profiles based-on the COARE 3.0 algorithm using the bulk 

measurements shown in Figure 6.   
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Figure 8. Examples of range-dependent refractivity using blended COAMPS®-

NAVSLaM forecasts. Refractivity versus range are shown for every 5m of altitude. 

Forecasts are arbitrarily chosen examples for a) October 20, 2015 12:00Z forecast hour 12, 

b) October 21, 2015 00:00Z forecast hour 1, c) October 21, 2015 00:00Z forecast hour 2, 

d) October 21, 2015 12:00Z Forecast hour 5, e) October 21, 2015 12:00Z forecast hour 6, 

and f) October 21, 2015 12:00Z forecast hour 7. 
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Figure 9. Gradient Richardson number calculated for each COAMPS®-NAVSLaM 

blended forecast during the CASPER-East experiment. All three types of stability regimes 

are contained in the time series with unstable conditions being the most common. 
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Figure 10. Modified refractivity with respect to range and altitude from multiple data 

sources. (a) shows COAMPS®-NAVSLaM blended modified refractivity data from 

October 21st, 2015 model run 12:00Z forecast hour 2 shown by small open dots with 

connected lines, along with COARE 3.0 using both time-averaged bow-mast 

measurements from the R/V Sharp on October 21st, 2015 at 13:42Z and 14:12Z, as well as 

time averaged measurements from Duck pier on October 21st, 2015 at 13:40Z, 14:00Z, and 

14:20Z. (a) also shows 7th order polynomial fitted tethered balloon modified refractivity 

data taken on October 21st, 2015 at 14:29Z. (b) shows COAMPS®-NAVSLaM blended 

data from October 17th, 2015 model run 12:00Z forecast hour 6, along with a tethered 

balloon measurement taken on October 17th, 2015 at 18:06Z. (c) shows COAMPS®-

NAVSLaM blended data from October 25th, 2015 model run 12:00Z forecast hour 8 along 

with data from COARE using measurements from the bow mast of the R/V Sharp on 

October 25th, 2015 at 19:42Z and 20:12Z. 
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Figure 11. Modified refractivity with respect to height at various ranges along with a 

range-averaged (mean) profile (black) used for VTRPE propagation predictions in Figure 

12. All profiles are from COAMPS®-NAVSLaM blended profiles for October 21st, 2015 

model run 12:00Z forecast hour 6.  
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Figure 12. Figures a-c show VTRPE propagation loss predictions using different modified 

refractivity profiles from Figure 11. (a) uses the mean modified refractivity profile and 

assumes horizontal homogeneity, (b) uses a range-dependent refractivity environment from 

Figure 11 (except the mean profile), and (c) uses the modified refractivity profile at r = 0 

km and assumes horizontal homogeneity. 
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5.0 Results 

5.1 Characterization of Range-Dependent Variations  

 Development of a range-dependent refractivity parametric model for use in 

inversion problems requires understanding which horizontally heterogeneous 

environmental variables cause the greatest impact on radar wave propagation. Previous 

studies have investigated which environmental parameters have impact on radar wave 

propagation in homogeneous refractive environments (Dogget, 1997; Gerstoft et al., 2003; 

Haack et al., 2010; Lentini and Hackett, 2015). Some parameters investigated in these 

studies come from previously developed parametric refractivity models by Gerstoft et al. 

(2003) or Paulus (1985, 1990), which include parameters such as duct height, duct 

curvature, and mixed layer slope (Saeger et al., 2015). Although much is known about how 

these parameters effect propagation in homogeneous environments, few have investigated 

what effects these parameters have on propagation if the parameters are horizontally 

heterogeneous (Brooks, 2001; Atkinson and Li, 2001). In this study, the impact of 

horizontally heterogeneous modified refractivity and associated refractivity characteristics: 

duct height and refractive gradients are investigated to determine their influence on 

propagation, as well as their relationship to atmospheric stability.  
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5.1.1 Modified Refractivity Variations over Range 

The standard deviation of modified refractivity is calculated over range for each 

altitude for each COAMPS®-NAVSLaM blended modified refractivity forecast during the 

CASPER-East field experiment. The mean standard deviation of modified refractivity with 

respect to range over all altitudes and all forecasts is 2.35 M-units, while the median is 1.13 

M-units. This result indicates that in most forecasts, modified refractivity typically varies 

1 - 2 M-units from the average over range at each altitude. However, the maximum standard 

deviation of modified refractivity with respect to range over all altitudes and all forecasts 

is 13 M-units while the minimum is approximately 0 M-units, indicating modified 

refractivity can vary dramatically over range. Upon visual inspection, these variations of 

modified refractivity in range are mostly distributed in oscillatory patterns. Figure 13 

shows a few examples illustrating oscillatory distributions, and Figure 14 illustrates 

respective spectrograms of the power spectral density of modified refractivity over range 

for each altitude. In all cases, the spectra show that the lowest resolved wavenumber 

(0.0158 km-1) generally contributes the most variance to modified refractivity in range. 

However, Figures 14c and 14d show large variance associated with slightly higher 

wavenumbers (0.0316 km-1, and 0.0474 km-1) as well. The variations of modified 

refractivity at these scales (~62 km, ~31 km, ~21 km) could be caused by many 

meteorological processes that can affect environments over these same scales such as 

land/sea interactions, synoptic weather fronts, or thunderstorms. For example, land/sea 

interactions include differential heating resulting in land/sea breezes, which change the 

temperature and humidity structure over the ocean surface over these scales (~62 km, ~31 

km, ~21 km). Synoptic fronts change temperature, pressure, and humidity over the largest 
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of these scales (~62 km), which in-turn influences refractivity. Lastly, thunderstorms, 

which typically are around the size of 24 km (~15 miles), can cause changes of temperature 

and humidity at scales similar to their size. Thus, thunderstorms taking place within the 

range of a measurement could contribute to the smaller scale oscillatory modified 

refractivity variations (~21 km). The refractivity variations in range of a single forecast at 

all altitudes are similar indicating that the atmospheric phenomena influencing them are 

relatively similar within the surface layer (lowest 100 m of altitude).  

To investigate the environmental effects which cause differences between separate 

forecasts in the variations of modified refractivity in range, peak wavenumbers from the 

spectrograms (e.g., Figure 14) are classified by the stability of the environment. The peak 

wavenumber is the wavenumber which contains the highest PSD for each altitude, and 

stability is evaluated using 𝑅𝑖̅̅̅ with categorized stability regimes as outlined in Section 4.3. 

Figure 15 illustrates histograms of peak wavenumber for all altitudes for all COAMPS®-

NAVSLaM blended profiles. Unstable environments show six wavenumbers that 

frequently appear as the peak wavenumber (0.0158 km-1, 0.0316 km-1, 0.0474 km-1, 0.0633 

km-1, 0.0791 km-1, and 0.0949 km-1), while stable environments show four wavenumbers 

(0.0158 km-1, 0.0316 km-1, 0.0474 km-1, and 0.0633 km-1), and free convective 

environments only show 3 wavenumbers (0.0158 km-1, 0.0316 km-1, and 0.0474 km-1). 

Thus, range-dependent parametric models which include unstable environments should 

consider functions that can model higher wavenumber variations of modified refractivity 

with range.  

To determine whether the observed typical variations in modified refractivity with 

range (1-2 M-units) are meaningful to propagation when introduced as a bias (or offset), 
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radar wave propagation predictions are investigated using the VTRPE simulation (see 

Section 4.2). Range-dependent modified refractivity environments where only surface 

modified refractivity is varied over range is considered. This analysis provides insight 

about the importance of changes in the magnitude of modified refractivity on propagation 

as compared to variations in the vertical refractive gradients (dM/dz) (discussed in a 

subsequent subsection). Figure 16 illustrates refractivity profiles that result from shifting 

surface modified refractivity in range by 2 M-units per 10 kilometers over a range of 60 

kilometers (Figure 16a), 5 M-units per 10 kilometers over a range of 60 kilometers (Figure 

16c), and 10 M-units per 10 kilometers over a range of 60 kilometers (Figure 16e). No 

refractive gradients (dM/dz) nor duct heights are changed, both of which have been 

reported to effect radar wave propagation (Turton et al, 1988; Skolnik, 1990). Propagation 

from environments whose modified refractivity are shifted over range (Figures 16a, 16c, 

16e) are compared to propagation in a homogeneous environment. The difference in 

propagation between these range-dependent and range independent refractivity 

environments are illustrated in Figure 16 (b, d, and f). These results show that shifting 

surface modified refractivity over range relative to an assumed homogeneous environment 

changes propagation loss by less than 1 dB, indicating minimal effects on propagation. 

This result is expected because the refractive gradient with respect to height (dM/dz) affects 

Maxwell’s equations for EM wave propagation not the refractivity itself (Craig and Levy, 

1991). Thus, other parameters such as duct height and refractive gradients (dM/dz) and 

their variations over range are considered for a range-dependent parametric model rather 

than the refractivity itself. Although such a parametric model wouldn’t directly 

parameterize modified refractivity with respect to range as most refractivity parametric 
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models of its kind do (Penton and Hackett, 2018; Gerstoft et al., 2003; Paulus, 1985; 

Paulus, 1990), it would still need to enable estimation of modified refractivity profiles, 

which is necessary for propagation simulations and inversion studies.  

5.1.2 Duct Height Variations Over Range 

 Duct heights are determined by the altitude where the modified refractivity gradient 

(dM/dz) is closest to zero. The highest altitude below 40 m which has a positive refractivity 

gradient and is preceded by two altitudes which have negative refractivity gradients is 

considered to be the duct height. These duct heights are calculated at each range for each 

investigated modified refractivity environment and are used to investigate typical duct 

height variations over range.  

The standard deviation of duct heights over range for all COAMPS®-NAVSLaM 

blended forecasts which contain evaporation ducts, but do not contain elevated ducts are 

investigated. The mean standard deviation of duct height over range for all of the examined 

forecasts is 0.94 m, while the median standard deviation is 0.44 m. This result indicates 

that in most forecasts, the duct height varied by at most 1 meter from the average duct 

height over range. However, the maximum standard deviation is approximately 5 meters, 

signifying that duct height can vary significantly over range, while the minimum is 

approximately 0 meters. These results align with previous studies including Brooks et al. 

(1999), Yang et al. (2015), and Brooks (2001) which reported evaporation duct heights 

varying by just a few meters over ~200 kilometers. The similarities amongst results may 

be attributed to the coastal environments explored in each of these studies, suggesting that 

duct height variations of only a few meters over range are typical in coastal environments.   
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The small mean and median standard deviations of duct height could suggest that 

the homogeneity assumption would be a reasonable approximation of duct height for ~80% 

of these forecasts. However, Figure 17 investigates the effects on propagation of an 

environment whose duct height varies linearly by 1 meter over 60 kilometers (the average 

variation of this data set) and an environment whose duct height varies by 5 meters over 

60 kilometers (the maximum variation of this data set) relative to an assumed homogenous 

duct height in range. These results illustrate that although more drastic differences in 

propagation loss are evident when the duct height linearly varies by 5 meters (Figure 17c 

and 17d), there are locations of more than 10 dB propagation loss discrepancies at long 

range when the duct height varies linearly by only 1 meter (Figure 17a and 17b), suggesting 

that duct height variances of 1 meter can cause non-negligible effects on radar wave 

propagation in some locations relative to assuming a homogenous duct height in range. 

Furthermore, since 83 of the 460 forecasts produce standard deviations greater than 1, 20% 

of the forecasts show significant changes in duct height over range.  

A majority (77% of all forecasts) of duct heights vary linearly over range, matching 

the assumption by Zhao et al. (2017), while some illustrate sinusoidal distributions (11% 

of all forecasts), step-like distributions (9% of all forecasts), or constant distributions (2% 

of all forecasts). Examples of these distributions are illustrated in Figure 18. Because linear 

distributions occur in a majority of the COAMPS®-NAVSLaM blended forecasts and 

linear distributions may be modeled using an oscillating function with low frequency, the 

effects of both distributions on propagation are investigated to determine which might have 

a larger influence on propagation. The maximum standard deviation of duct height over 

range examined in the COAMPS®-NAVSLaM blended data for both linear and sinusoidal 
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distributions is used to examine the most extreme propagation effects. Figure 19 shows a 

linear duct height variation of 15 meters over 50 kilometers, and a sinusoidal duct height 

variation, which oscillates with 3 m amplitude around a 10 meter duct height, where the 

standard deviations of duct height in range are ~5 m and 2 m, respectively.  Figure 20 

illustrates corresponding differences in propagation relative to an assumed homogenous 

environment.  The linear variations of duct height in range show more drastic effects on 

propagation, especially at low altitudes and long ranges, consistent with the previously 

mentioned finding (Figure 17). 

 In order to understand the meteorological effects that relate to duct height variations 

in range, stability is examined using gradient Richardson number. 𝑅𝑖̅̅̅ for each forecast is 

classified with respect to the type of duct height range variation and shown in Figure 21. 

These results illustrate that duct height variations in range which are flat or show step-like 

distributions occur mostly during near-neutral or stable environments, while sinusoidal and 

linear distributions occur during mostly unstable and, in some cases, free convective 

environments. In order to determine a relationship between duct height and stability, 𝑅𝑖̅̅̅(𝑟) 

is correlated to duct height with respect to range for each forecast. A histogram of the 

correlation coefficients between these variables is shown in Figure 22. The histogram 

shows that the highest number of forecasts have correlation coefficients between the range 

of 0.8 and 1, indicating that ~20% of the cases contain a direct relationship between 𝑅𝑖̅̅̅(𝑟) 

and duct height. However, there are also cases that indicate an inverse relationship, and 

many with approximately no correlation. Thus, although 20% of the cases show a direct 

relationship, there seem to be additional factors affecting the duct height variations in range 

that requires further investigation.  
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 In summary, duct heights which vary by amounts as small as 1 m over 60 km can 

cause non-negligible effects on propagation relative to a homogenous environment and a 

majority (77%) of the duct heights investigated in this study are found to be linearly 

distributed in range. Also, linearly distributed duct heights with respect to range exhibit 

stronger effects on propagation than sinusoidal variations which was the next-most-

frequently occurring duct height distribution in this study. Furthermore, duct height 

variations in range seem to display some dependence on atmospheric stability.  

5.1.3 Variations of Refractivity Gradients over Range 

Since refractive gradients play an integral role in propagation of radar waves (Craig 

and Levy, 1991), range variations of vertical refractive gradients (dM/dz) are investigated. 

Variations of refractive gradients over range are examined for all COAMPS®-NAVSLaM 

blended environments which contain evaporation ducts without elevated ducts. Figure 23 

shows an example of refractive gradient distributions in range where it is apparent that the 

variations are oscillatory, and the amplitude of the refractive gradient variations change 

with altitude. At low altitudes (below the duct height), gradients are negative and vary in 

range. At high altitudes (above the duct height), gradients are positive and relatively 

constant. Figure 24 shows examples of refractivity gradients with respect to height above 

and below the duct height. In all COAMPS®-NAVSLaM blended data refractivity 

gradients below the duct height are large and negative, and approach zero as z approaches 

the duct height (Figure 24a), and refractivity gradients above the duct height are positive 

and asymptote to similar values at all ranges (Figure 24b). These observations are expected 

because low altitudes contain the duct where refractive gradients are negative. Due to 

proximity to the surface, complex air-sea interactions can cause refractivity gradients near 
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the surface to vary rapidly in altitude. The altitudes above the duct height are consistent 

with a well-mixed layer with positive and nearly uniform refractive gradients. All forecasts 

of refractive gradient range variations below the duct height are classified into 3 categories: 

linear distributions (18% of all profiles), oscillatory distributions (79% of all profiles), and 

a combination of oscillatory and linear distributions (3% of all profiles). Examples of each 

type of distribution are shown in Figure 25. Because oscillatory and linear distributions are 

most common, refractivity gradients are varied in both distributions over range similarly 

at all altitudes and the resulting effects on propagation loss are investigated to determine if 

oscillatory or linear distributions show greater effects on propagation. Furthermore, 

environments that illustrate higher frequency oscillations (Figure 26a), lower frequency 

oscillations (Figure 26c), and linear distributions (Figure 26e) of refractive gradients with 

respect to range are considered to compare their differing effects on propagation. It should 

be noted that refractive gradients at the surface are much greater than refractive gradients 

at higher altitudes, where in some cases, they are different by up to 2 orders of magnitude. 

Nevertheless, resulting propagation loss difference between each environment exemplified 

in Figure 26 and their respective homogenous environment is shown in Figure 27.  The 

magnitude of dM/dz variations in each of these cases are relatively similar; thus, 

propagation differences are assumed to be related to the distributions in range and not the 

magnitude of the variations. Figure 27 shows that environments with refractive gradients 

that are sinusoidal over range such as those shown in Figure 27a and 27b, have larger 

variations in propagation over a larger area than those that have a linear distribution.  This 

result suggests that variations of refractivity gradients that are oscillatory have a greater 
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impact on propagation than linear variations relative to an assumed homogenous 

environment. 

 Environmental effects which cause differences in the sinusoidal variations of 

surface refractivity gradients in range are investigated via peak wavenumbers classified by 

atmospheric stability (similar to Section 5.1.1). Peak wavenumbers are identified as the 

wavenumber, which contains the highest PSD of the surface refractive gradient over range 

for each forecast. Stability is defined using 𝑅𝑖̅̅̅ and stability regimes outlined in Section 4.3.  

Figure 28 illustrates histograms of these peak wavenumbers. Free convective environments 

frequently have one dominant peak wavenumber (0.0158 km-1), while stable environments 

commonly have two peak wavenumbers (0.0158 km-1, 0.0316 km-1), and unstable 

environments frequently have three dominant wavenumbers (0.0158 km-1, 0.0316 km-1, 

0.0474 km-1). Similar to modified refractivity peak wavenumbers, unstable environments 

can contain surface layer refractivity gradient variations in range that involve shorter length 

scales, while stable and free convective conditions more often contain lower wavenumber 

(longer length scale) variations. Thus, sinusoidal models parameterizing surface refractive 

gradients in unstable environments need to consider including higher wavenumber 

representations to make an accurate estimation than those which are intended for stable or 

free convective conditions. 

The amplitudes of oscillatory variations of refractive gradients over range are 

investigated to determine if the magnitudes of the amplitudes have an effect on 

propagation.  Differences between the refractive gradient at each range and the mean 

refractive gradient over range at each altitude are calculated, and the maximum and 

minimum differences over all ranges and altitudes for each forecast are shown in Figure 
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29; these maximum and minimum differences are considered to be the (maximum and 

minimum) amplitude of the refractivity gradient sinusoidal range variations. The 

amplitudes based on maxima are larger than the minima, suggesting that the variations of 

dM/dz from the mean are asymmetrical with those above the mean value being larger on 

average. In order to investigate the effects of the sinusoidal amplitude of refractive 

gradients on propagation, a percent difference for each forecast used in this study is 

calculated: 

 

𝐷 =

𝑑𝑀
𝑑𝑧

|𝑧 = 𝑧𝑚𝑎𝑥
𝑟 =  𝑟𝑚𝑎𝑥

− 
𝑑𝑀̅̅̅̅̅

𝑑𝑧
|
𝑧 = 𝑧𝑚𝑎𝑥

(
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𝑑𝑧
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+ 
𝑑𝑀̅̅̅̅̅

𝑑𝑧
|
𝑧 = 𝑧𝑚𝑎𝑥

2

)

  
 

× 100% 

(17) 

where 𝑧𝑚𝑎𝑥 is the altitude of the maximum difference between refractive gradient and the 

range-mean refractive gradient of a forecast and 𝑟𝑚𝑎𝑥 is the range at which the max 

difference occurs for 𝑧 = 𝑧𝑚𝑎𝑥, and 
𝑑𝑀̅̅ ̅̅̅

𝑑𝑧
|
𝑧 = 𝑧𝑚𝑎𝑥

 is the mean dM/dz over range at  𝑧 =

𝑧𝑚𝑎𝑥. The percent difference is used because there is no “reference” or “exact” value 

measured, which is required for percentage change or percentage error calculations, 

respectively. Thus, percent difference allows estimation of the magnitude of the amplitude 

of sinusoidal refractivity gradient variations in range for this set of data. The mean percent 

difference throughout all profiles is 25.3%, while the maximum and minimum percent 

differences are 85.59% and 1.23% respectively. This result indicates that the amplitudes 

are 25.3% larger or smaller than the average refractivity gradient for most forecasts 

examined.  These percent differences are used to generate refractive gradient environments 
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which are sinusoidal in range that resemble behaviors seen in the data. Figure 30 shows 

refractivity gradients with respect to range and associated range-dependent modified 

refractivity profiles, which are used to examine the effects of these variations on 

propagation. The refractive gradient varies from the mean dM/dz over range for each 

altitude by 1.23%, 25.3%, and 85.59%. Figure 31 shows the propagation loss differences 

between simulated propagation using heterogeneous refractive environments illustrated in 

Figure 30, and coinciding homogeneous refractive environments using the refractive 

profile at r = 0 km. These results suggest that the amplitude of the sinusoidal variance of 

refractive gradients over range has non-negligible effects on the location of the multipath 

nulls in propagation patterns. The larger the amplitude, the larger the difference in the 

location of multipath nulls relative to a homogeneous environment. Other regions of the 

propagation domain vary less than 5 dB as a result of the amplitude changes. These results 

contrast those in Figure 27 (a, b) that show regions of localized propagation loss differences 

of ~-40 dB at low altitudes and long ranges associated with oscillatory variations in 

refractive gradients. Further examination of refractive environments (Figure 26 (a-d) and 

Figure 30 (a-f)) used to generate these propagation loss differences (Figure 27 (a, b) and 

Figure 31) reveals contrasting mean refractivity gradients over range and different initial 

phases of the oscillatory range-dependent refractive gradient variations. This comparison 

suggests that the mean and initial phase of the refractivity gradients over range likely 

produces effects on propagation loss in heterogeneous environments. These results are 

logical because the mean refractive gradients over range, along with the initial phase, 

change how the shape of the duct evolves through range. Many studies have shown that 

the shape of the modified refractivity profile is of importance to radar wave propagation 
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(Pastore et al., 2020; Lentini and Hackett, 2015; Babin and Dockery, 2002; Paulus, 1985), 

which suggests that any effects that vary the shape of the duct over range are likely to cause 

effects on radar wave propagation. Thus, even though variations in propagation loss are 

isolated to multipath null locations in Figure 31, variations at low altitude and long range 

are possible (consistent with that shown in Figure 27). 

In order to investigate the typical initial phase of refractivity gradient oscillations, 

the range at which (maxima) amplitude of the oscillatory surface refractive gradient 

variations occurs is shown in Figure 32. For most profiles the peak dM/dz occurs nearest 

to shore (r = 0 km) or farther out at sea (r = 55-60 km). Large dM/dz near the shore could 

be due to the land-sea interface, while the large dM/dz offshore is likely associated with 

changes in sea surface temperatures caused by the Gulf Stream. However, because 

maximum amplitudes were observed at numerous ranges, the phase of the sinusoidal 

variation of refractive gradients over range should be considered variable.  

In summary, refractivity gradients which are sinusoidal over range result in larger 

variations in propagation over larger areas than linear variations in range. Also, amplitudes 

of refractivity gradient oscillatory variations in range have non-negligible effects on 

propagation especially at the location of multipath nulls. Additionally, the mean refractivity 

gradients over range or the initial phase of refractivity gradient oscillatory variations in 

range could have non-negligible effects on propagation at low altitudes and long ranges. 

Furthermore, a majority (79%) of the refractive gradients investigated in this study are 

found to follow sinusoidal distributions in range although the phase of the sinusoidal 

distribution differs. Using this information, a sinusoidal function which considers 
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frequency, amplitude, and phase could accurately estimate the range distributions of 

refractivity gradients.  

5.2 Range-Dependent Parametric Model  

The previous section outlined refractivity characteristics that cause the greatest 

impact on propagation: (i) linear variations in duct height with respect to range as little as 

1 m can cause non-negligible effects on propagation (Figure 17), (ii) sinusoidal variations 

of refractivity gradients in range cause greater effects on propagation than linear variations 

(Figure 27), (iii) all refractivity gradients below the duct height are negative and approach 

zero near the duct height (Figure 24a), and (iv) refractivity gradients above the duct height 

are positive and asymptote to similar values (Figure 24b). These results are used to develop 

a range-dependent parametric model for refractivity gradients, which can be integrated to 

produce modified refractivity using a range-dependent surface measurement of modified 

refractivity. Lastly, each function composed within the parametric model is evaluated using 

methods outlined in Section 4.4.  

A one-way coupled set of equations is used to parameterize a heterogeneous 

refractivity gradient environment. This one-way coupled set of equations is henceforth 

referred to as the heterogeneous refractivity gradient model (HRGM) and is described 

below. Applying characterization result (i), a linear function is chosen to describe the 

variations of duct height with respect to range: 

 𝑧𝑑(𝑟) = 𝜉𝑟 + 𝑧𝑑0 (18) 

The duct height is parameterized using 𝜉, which is the rate of duct height change in range, 

and 𝑧𝑑0, which is the duct height at r = 0 km. The duct height with respect to range 
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(Equation 18) is used in conjunction with a vertically layered set of functions to describe 

refractivity gradients over altitude and range: 

 
𝑑𝑀

𝑑𝑧
(𝑟, 𝑧) =  

{
 
 

 
 

𝑚1 (1 − 𝑒
−𝜅2𝑧), 𝑧 > 𝑧𝑑

0, 𝑧 = 𝑧𝑑
𝑑𝑀

𝑑𝑧
|
𝑧 = 0

 𝑒𝜅1𝑧 +
𝑑𝑀

𝑑𝑧
|
𝑧 = 𝑧𝑑 − 𝑑𝑧

, 0 < 𝑧 < 𝑧𝑑

𝑎1 𝑐𝑜𝑠(2𝜋(0.0158)𝑟 + 𝜑) + 𝑎2 𝑐𝑜𝑠(2𝜋(0.0316)𝑟 + 𝜑) + 𝑎3 𝑐𝑜𝑠(2𝜋(0.0474)𝑟 + 𝜑) + 𝜇𝑑𝑀
𝑑𝑧
,  𝑧 =  0

 (19) 

where 𝑎1, 𝑎2, and 𝑎3 represent amplitudes of surface refractivity gradient oscillations for 

their respective wavenumber; 𝜇𝑑𝑀
𝑑𝑧

 is the mean refractivity gradient about which the 

gradients oscillate at the surface; 𝜑 is the initial phase of surface refractivity gradient 

variations; 𝜅1 and 𝜅2 are decay rates of refractivity gradients with height below and above 

the duct height, respectively; 
𝑑𝑀

𝑑𝑧
|
𝑧 = 𝑧𝑑 − 𝑑𝑧

  describes the refractivity gradient just 

below the duct height; 𝑚1 represents the mixed layer slope. The 
𝑑𝑀

𝑑𝑧
|
𝑧 = 𝑧𝑑 − 𝑑𝑧

 term 

ensures that this function doesn’t approach zero too quickly causing an underestimation of 

the duct height. Parameters 
𝑑𝑀

𝑑𝑧
|
𝑧 = 𝑧𝑑 − 𝑑𝑧

,𝜅1 , 𝜅2, and 𝑚1 are assumed to be 

homogeneous over range. These 11 parameters (𝜉, 𝑧𝑑0, 𝑎1, 𝑎2, 𝑎3,  𝜇𝑑𝑀
𝑑𝑧

, 𝜑, 𝜅1, 

𝑑𝑀

𝑑𝑧
|
𝑧 = 𝑧𝑑 − 𝑑𝑧

, 𝑚1, and 𝜅2) constitute the HRGM.  

The lowest level of refractivity gradients (Equation 19, z=0 layer) are modeled 

based upon characterization result (ii) as well as other results outlined in Section 5.1.3. The 

function accounts for variable amplitude, phase, and mean surface refractivity gradients. 

The wavenumbers (0.0158 km-1, 0.0316 km-1, and 0.0474 km-1) used to describe the surface 

refractivity gradients are based-on results from peak wavenumbers of surface refractive 

gradients for unstable conditions. The next level of the model (Equation 19, 0 < z < 𝑧𝑑) 
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which consists of a decay function, is based on characterization result (iii). Refractivity 

gradients are set to zero at the duct height predicted from Equation 18. Based on 

characterization result (iv), a separate decay function (Equation 19, z > 𝑧𝑑 layer) is used to 

describe refractivity gradients above the duct height. A discrete representation of the 

HRGM (Equations 18 and 19), can be used to produce a discrete range-dependent modified 

refractivity environment using a surface measurement of modified refractivity over range 

(𝑀(𝑟𝑖 , 𝑧0)); akin to integrating Equation 19 over altitude:  

 
𝑀(𝑟𝑖 , 𝑧𝑗+1) = 𝑀(𝑟𝑖 , 𝑧𝑗) +

𝑑𝑀

𝑑𝑧
(𝑟𝑖 , 𝑧𝑗)∆𝑧 (20) 

where i=0,1,2,…. 𝑛𝑥𝑟  is an index of discrete ranges where 𝑛𝑥 is the total number of discrete 

ranges, and j=0,1,2,…. 𝑛𝑥𝑧 − 1 is an index of discrete altitudes, where  𝑛𝑥𝑧 is the total 

number of discrete altitudes, and ∆𝑧 = 𝑧𝑗+1 − 𝑧𝑗. Equation 20 will be referred to as the 

integral form of the HRGM. 

 Since the HRGM is composed of multiple functions which describe separate layers 

of altitudes, each layer is scrutinized by comparing the data to that layer’s model using 

parameters estimated from least-squares regressions. This analysis allows understanding 

of which functions within the HRGM could be improved to produce more accurate 

measurements.  

 Linear-least-squares regression using Equation 18 to estimate duct heights is 

applied for all forecasts, including those which exhibited non-linear behavior. Duct heights 

from fits of these regressions are compared to duct heights in the forecasts via RMSE or 

𝛼𝑧𝑑 (Equation 11 for duct height). Figure 33 illustrates that 𝛼𝑧𝑑 is frequently less than 0.5 

meter indicating that, in some cases, forecasts that exhibited sinusoidal or step-like 
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behavior could be accurately estimated by a linear function that describes duct height in 

range.  

In the development of the function representing the z=0 layer of the HRGM 

(Equation 19), two oscillatory functions were evaluated.  The first was a basic cosine 

model:  

 𝑑𝑀

𝑑𝑧
(𝑟) = 𝑎 𝑐𝑜𝑠(2𝜋𝑘𝑑𝑀

𝑑𝑧
𝑟 + 𝜑) +  𝜇𝑑𝑀

𝑑𝑧
 (21) 

where 𝑎 is the amplitude of the refractivity gradient variation, and 𝑘𝑑𝑀
𝑑𝑧

 is the wavenumber 

of the refractivity gradient variations. These variables are fit in non-linear least squares 

regressions. The second function evaluated is that shown in Equation 19 for the z=0 layer. 

The primary distinction between the two models is that Equation 21 allows for the 

dominant wavenumber to be fit while the other model in Equation 19 fixes the 

wavenumbers but incorporates more than one wavenumber. RMSEs (𝛼𝑑𝑀
𝑑𝑧
|
𝑧=0

) between 

surface refractivity gradient models, and the refractivity gradient from the data are 

calculated and shown in Figure 34. The basic cosine function (Equation 21, Figure 34a) 

has an RMSE standard deviation of 13.87 M-units/m, an average RMSE of 9.39 M-units/m, 

a maximum RMSE of 109.74 M-units/m, and a minimum RMSE of 0.53 M-units/m; while 

the model used in the z=0 layer of the HRGM (Equation 19, Figure 34b) has an RMSE 

standard deviation of 7.09 M-units/m, an average RMSE of 8.41 M-units/m, a maximum 

RMSE of 55.12 M-units/m, and a minimum RMSE of 0.77 M-units/m. Although the cosine 

model RMSEs (Equation 21) have a slightly increased frequency of the most accurate 

refractivity gradients (Figure 34), it has larger RMSE standard deviation, RMSE average, 

and RMSE maximum and minimum. These facts suggest that the function used in the 
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HRGM (Equation 19) is more accurate in representing variations of surface refractive 

gradients with respect to range. Furthermore, Equation 19 seems to produce more stable 

and accurate estimations than the basic cosine function (Equation 21). The primary 

shortcoming of the basic cosine model appears to be related to inaccuracies in predicting 

the wavenumber (𝑘𝑑𝑀
𝑑𝑧

). However, the basic cosine function did show some merit in many 

situations, suggesting that other sinusoidal functions besides the one used in the HRGM 

could be used to predict surface refractivity gradients.  

Nonlinear least squares regression is applied to all refractive gradient profiles with 

respect to height below the duct height at each range for all COAMPS®-NAVSLaM 

blended data to estimate the vertical decay rate (𝜅1) and the refractivity gradient just below 

the duct height (
𝑑𝑀

𝑑𝑧
|
𝑧 = 𝑧𝑑 − 𝑑𝑧

) at each range over all datasets (see Equation 19). RMSEs 

(𝛼𝑑𝑀
𝑑𝑧
|
𝑧<𝑧𝑑

) between estimates of refractivity gradient produced by the HRGM in model 

layer 0<z<zd and refractivity gradients in the blended data set are calculated for all 

forecasts. Since refractivity gradients vary by as much as 2 orders of magnitude, RMSEs 

are normalized by the mean refractive gradient over range, referred to as percent error or 

E (see Equation 12), which is shown in Figure 35. These results show that the RMSEs are 

most frequently between 40-50% of the mean refractivity gradients with RMSEs ranging 

from less than 10% up to 70% of the mean refractivity gradient. This fact suggests that this 

layer of the HRGM may not be well-suited for all environmental cases but could be useful 

in some. Future research could investigate ways to improve this layer of the HRGM.  

Nonlinear least squares regression is applied to all refractive gradient profiles with 

respect to height at each range in all COAMPS®-NAVSLaM blended data above the duct 
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height to estimate the vertical decay rate (𝜅2) and the mixed layer slope (𝑚1) for evaluating 

the z>zd layer of the HRGM. Figure 36 shows RMSEs between refractivity gradient 

(𝛼𝑑𝑀
𝑑𝑧
|
𝑧>𝑧𝑑

) of each forecast and those estimated using the HRGM model layer z>zd 

(Equation 19) over range. These results suggest that the HRGM model is an accurate 

representation of refractivity gradients above the duct height with E < 10% for the vast 

majority of the datasets, implying that errors are typically less than 10% of the mean 

refractivity gradients above the duct height.  

5.3 Range-Dependent Parametric Refractivity Gradient Model Evaluation and 

Discussion 

 To test the HRGM (Equations 18 and 19) for accuracy in terms of modified 

refractivity as well as propagation predictions, it is used to estimate refractivity gradients 

using the least squares fit of each parameter for each COAMPS®-NAVSLaM blended 

forecast. Each estimated refractivity gradient domain is transitioned to modified 

refractivity using the integral form of the HRGM (Equation 20), and the surface modified 

refractivity estimations from the corresponding COAMPS®-NAVSLaM blended forecasts 

as the boundary condition at M(ri, z0). Figure 37 illustrates an example M(r,z) environment 

produced using the integral form of the HRGM and the corresponding COAMPS®-

NAVSLaM blended forecast. It should be noted that M profiles produced by the HRGM 

have a “kink” or “elbow” shape at the duct height which could cause discrepancies in PL 

estimates. Estimates of M(r,z) are used to simulate propagation via VTRPE. Both the 

resulting modified refractivity (M(r,z)) and the resulting propagation patterns are compared 

to those from COAMPS®-NAVSLaM blended data using methods outlined in section 4.5. 
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 RMSEs of modified refractivity (see section 4.5) are calculated for the entire 

domain (i.e., over range and altitude) for each forecast and are illustrated in Figure 38. The 

mean and median of these RMSEs are 3.01 and 2.42 M-units respectively, which illustrates 

that on average the HRGM is able to accurately model modified refractivity of the 

COAMPS®-NAVSLaM blended data. The minimum RMSE is 0.32 M-units, while the 

maximum is 18.66 M-units, which suggests that this model performs better in some 

environmental cases than in others. Although no correlation seems to be evident between 

RMSEs of modified refractivity and stability (𝑅𝑖̅̅̅), it should be noted that Figure 38 

illustrates time periods where RMSEs increase as compared to the overall trend (e.g., 

between forecasts 200 and 300), and decrease compared to the overall trend (e.g., between 

forecast 350 and 450). Wang et. al (2018) reported that synoptic fronts passed through the 

study area on October 18th, 19th, 23rd, 26th, and 28th, which coincide with forecasts 200 – 

300 on Figure 38, indicating that the HRGM has greater error during these times of the 

synoptic frontal events. Also, after inspection of visual and infrared satellite imagery 

maintained by the Mesoscale and Microscale Meteorology Division of the National Center 

of Atmospheric Research (NCAR; Ahijevych, 2020) during the times of the CASPER-East 

field experiment, it is shown that the region was rather cloudy between November 1st and 

November 4th, which coincides with forecasts 350-450. This fact may suggest that the 

integral form of the HRGM has less error when conditions are cloudy; but of course, this 

result could also be related to other environmental effects. Histograms of all residuals and 

RMSEs calculated for this data set are shown in Figure 39. Residuals most frequently occur 

between ±5 M-units with more positive residuals than negative residuals while RMSEs are 

typically 1-3 M-units. These results further suggest that the model performs well in a 
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majority of cases, but not in all, and more frequently overestimates modified refractivity 

than underestimates it.  

 In order to identify where in altitude and range the modified refractivity estimates 

using the parametric model perform best, the mean residual (𝛽𝑀(𝑟, 𝑧)), which is the 

forecast-averaged residual between each HRGM-estimated forecast and its corresponding 

COAMPS®-NAVSLaM blended forecast, is shown in Figure 40. These results show that 

the mean residual is typically between ±3 M-units, which is on par with the average RMSEs 

mentioned previously. Also, these results illustrate that the modified refractivity is typically 

underestimated beneath the average duct height (~9.5 m), and overestimated above the 

mean duct height. Although the changes in mean residual are larger over altitude, there are 

also variations over range. M(r,z) is estimated more accurately by the integral form of the 

HRGM above the average duct height in the short range (0-30 km) than in the long range 

(30-60 km), while estimates below the average duct height are more accurate in the long 

range (30-60 km), and less accurate in the short range (0-30 km). There are also 

discontinuities of 𝛽𝑀(𝑟, 𝑧) between r = 0 km and r = 2.04 km, which could be related to 

the location of the maximum amplitude of surface dM/dz illustrated previously in Figure 

32 that frequently occurs near Duck pier most likely due to the land/ocean interface.  

There are many cases such as those illustrated in Figure 41, where modified 

refractivity is estimated accurately (~1 M-unit) (Figure 41(a-b)) throughout the domain and 

some cases where modified refractivity is estimated poorly (Figure 41(c-d)). The well-

estimated modified refractivity environments (Figure 41(a-b)) show similar distributions 

of 𝛽𝑀(𝑟, 𝑧), where estimations below the duct height seem to be the most accurate region 

in the entire domain (~0 M-units), while just above the duct height seems to show the most 
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discrepancies throughout the entire domain (~2 M-units). The poorly-estimated modified 

refractivity environments (Figure 41 (c-d)) show a basic similar shape of distributions 

of 𝛽𝑀(𝑟, 𝑧), with Figure 41d showing greater residual magnitudes. In both subfigures 

(Figure 41c-d), there is an overestimation of modified refractivity at low-to-mid-altitudes 

(10-40 m) and close ranges (0-30 km), where the estimation within those altitudes improves 

at the long ranges (40-60 km). This region of overestimation is likely associated with the 

HRGM’s parameters: 
𝑑𝑀

𝑑𝑧
|
𝑧 = 𝑧𝑑 − 𝑑𝑧

, 𝜅1, and/or 𝜅2, which are all assumed to be constant 

with range. These results may suggest that COAMPS®-NAVSLaM blended environments 

show many examples where these parameters vary in range, and in some cases, this causes 

a breakdown of estimating modified refractivity using the HRGM. Further research should 

investigate the effects of range-varying 
𝑑𝑀

𝑑𝑧
|
𝑧 = 𝑧𝑑 − 𝑑𝑧

, 𝜅1, and 𝜅2 on modified 

refractivity and propagation. Along with areas of overestimation, there seem to be areas of 

underestimation in both subfigures (Figure 41c-d) at high altitudes (50-100 m) and all 

ranges. These regions of underestimation could be related to the assumption made in the 

HRGM that m1 is constant with respect to range, indicating that the COAMPS®-

NAVSLaM blended environments sometimes show a shifting mixed layer slope with 

range, which the HRGM cannot accurately reproduce.  

 To understand why the HRGM estimates refractivity poorly in some cases and 

accurately in others, RMSEs of refractivity gradients and duct heights are correlated to 

RMSEs of modified refractivity (𝛼𝑀) throughout the entire domain. Table 2 illustrates 

correlation coefficients (Equation 10) for each layer that comprises the HRGM along with 

their associated significance values (p-values). Correlated estimated model parameters 
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include RMSEs of duct height with respect to range (𝛼𝑧𝑑), and RMSEs of refractivity 

gradients at the surface (𝛼𝑑𝑀
𝑑𝑧
|
𝑧=0

 ), below the duct height (𝛼𝑑𝑀
𝑑𝑧
|
𝑧<𝑧𝑑

), and above the duct 

height (𝛼𝑑𝑀
𝑑𝑧
|
𝑧>𝑧𝑑

). Significance is determined by p-values that are less than 0.05. Each 

correlated variable illustrated in Table 2 significantly correlates with 𝛼𝑀, although 

strongest correlations, by far, are with 𝛼𝑑𝑀
𝑑𝑧
|
𝑧=0

, indicating that 𝛼𝑑𝑀
𝑑𝑧
|
𝑧=0

 has the strongest 

direct relationship to the error of modified refractivity in the entire domain (𝛼𝑀); thus, in 

some cases, the sinusoidal model used to describe the surface refractive gradient is sub-

optimal. Figure 34b illustrates that there are occurrences where the functional form that 

describes surface refractivity gradients within the HRGM performs poorly. Additionally, 

Figure 34a illustrates that other sinusoidal functions besides the one used in the HRGM 

show promise at predicting surface refractivity gradients. Further research could 

investigate other functional forms which could improve the estimates of surface refractive 

gradients or determine if certain sinusoidal functions perform better under specific 

atmospheric conditions. Table 2 also illustrates a weak direct correlation between modified 

refractivity 𝛼𝑀 and 𝛼𝑧𝑑, indicating that inaccuracies in the linear model used to estimate 

duct heights in the HRGM can relate to uncertainties in modified refractivity. The lower 

correlation coefficient suggests that it is less likely for errors in modified refractivity to 

occur based on duct height estimation, than within the sinusoidal model used to estimate 

surface refractive gradients (Figure 34b). Furthermore, correlation coefficients in Table 2 

illustrate weak inverse relationships between 𝛼𝑀 and 𝛼𝑑𝑀
𝑑𝑧
|
𝑧<𝑧𝑑

as well as 𝛼𝑀 and 𝛼𝑑𝑀
𝑑𝑧
|
𝑧<𝑧𝑑

. 

These inverse relationships suggest that, on occasion, when the decay functions within the 

HRGM that are used to estimate refractivity gradients above or below the duct height 
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perform poorly (Figures 35 and 36), the modified refractivity throughout the entire domain 

can still be accurately estimated. One interpretation of this result would be that when the 

decay functions produce inaccurate results, other layers within the HRGM are frequently 

more accurate than average enabling modified refractivity throughout the entire domain to 

be estimated more accurately. 

 In order to evaluate the HRGM’s accuracy at predicting propagation, PL RMSE 

(𝛼𝑃𝐿), and residuals (𝛽𝑃𝐿) (see Section 4.5) are calculated for each forecast. The mean and 

median 𝛼𝑃𝐿 are 10.64 dB and 9.46 dB, respectfully. The minimum 𝛼𝑃𝐿 is 3.45 dB, while 

the maximum is as high as 100 dB. Similar to the results for modified refractivity, these 

statistics suggest that the HRGM results in propagation estimates that are better in some 

environments than others. Figure 42 shows histograms of the residuals and RMSEs of 

estimated propagation loss. The residuals show a near Gaussian distribution about 0 dB, 

which indicates that on-average residuals are small and there is no bias. The RMSEs show 

that typically the model predicts propagation within 5-10 dB of the associated propagation 

simulated using the COAMPS®-NAVSLaM blended forecast. It should be noted, however, 

that RMSEs are more frequently above 5 dB than below. This higher RMSE may be due 

to inaccurate placement of the multipath nulls, which could cause large variances of the 

PL. Figure 43 shows RMSEs calculated (see Section 4.5) throughout the entire domain for 

each forecast. The RMSEs shown are filtered using a 5 forecast running average filter in 

order to reduce small scale variability in the time series. Although no correlation between 

𝛼𝑃𝐿 and stability (𝑅𝑖̅̅̅) is evident, there are time periods where PL RMSEs seem to increase 

relative to the mean (e.g. forecasts 320-420) and time periods where PL RMSE variability 

is small (e.g. forecasts 200-300). The time periods where PL RMSEs are large coincide 
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with previously discussed cloudy conditions identified via visible satellite imagery 

(Ahijevych, 2020). This fact could suggest that cloudy conditions, although they may make 

it easier to predict the modified refractivity, the improved modified refractivity does not 

result in improved PL predictions. However, time periods where the variability of the PL 

RMSEs are small are associated with the previously discussed synoptic frontal events 

identified by Wang et al. (2018). This result suggests that the synoptic front events result 

in smaller variation of estimations of propagation when using the HRGM even though the 

refractivity comparisons were worse during this period.  This result may suggest decreased 

sensitivity of PL to the refractivity variations that are not captured by the HRGM during 

these times.  

 In order to identify where in altitude and range the propagation estimates using the 

parametric model perform best, the mean residual (𝛽𝑃𝐿(𝑟, 𝑧)), which is the forecast-

averaged residual between PL based-on each HRGM-estimated forecast and PL based-on 

the corresponding COAMPS®-NAVSLaM blended forecast, is illustrated in Figure 44. 

These results suggest that discrepancies within the propagation often occur at the locations 

of the multipath nulls, and above typical duct heights at long range (r = 30-60 km). A 

sensitivity study by Lentini and Hackett (2015) shows that the duct height is the most 

influential parameter close to the transmitter (within a range of 10 km), while propagation 

at long range is more sensitive to duct shape. Applying these results suggest that since the 

region of inaccurate estimation of multipath nulls is near the transmitter and within 10 km, 

it is likely that discrepancies in the duct heights are leading to differences in the location 

of the multipath nulls. Furthermore, since propagation at long range is more sensitive to 

duct shape, it is likely that differences in the shape of the duct are leading to discrepancies 
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at the long range, mid altitude region. Although discrepancies between model-predicted 

propagation and that using COAMPS®-NAVSLaM blended data exist, the magnitude of 

the mean residuals are rather small, especially outside of the location of the multipath nulls. 

It should be noted, however, that these results are averages and there are many cases that 

the model performs better and worse than the average. 

  Figure 45 illustrates some cases where propagation is estimated accurately (< ~9 

dB) throughout the entire domain (Figure 45(a-b)) and some cases where propagation is 

estimated poorly (Figure 45(c-d)). The well-estimated PL environments (Figure 45(a-b)) 

show similar distributions of 𝛽𝑃𝐿(𝑟, 𝑧), where the most dramatic changes seen within the 

domain lie at the location of the multipath nulls. On the other hand, the poorly-estimated 

PL environments (Figure 45(c-d)) also show similar distributions of 𝛽𝑃𝐿(𝑟, 𝑧) to each other. 

In these cases, the locations of the multipath nulls show higher 𝛽𝑃𝐿(𝑟, 𝑧) relative to those 

cases illustrated in Figure 45(a-b). Also, in contrast to Figure 45(a-b), residuals of PL are 

greater at low altitudes and long ranges. Although the low altitude long range region 

illustrated inaccurate predictions from the HRGM in these cases, there were other cases 

where the HRGM accurately predicted propagation in this region in order to produce the 

average results shown in Figure 44. 

To understand why the parametric model estimates propagation poorly in some 

cases and accurately in others, RMSEs of refractivity gradients and duct heights are 

correlated to RMSEs of propagation loss over the entire domain. Table 3 illustrates 

correlation coefficients calculated between 𝛼𝑃𝐿, and 𝛼𝑀 or the RMSEs (𝛼𝑥) of duct height 

and refractivity gradients of each layer that comprises the HRGM (i.e., 𝛼𝑧𝑑, 𝛼𝑑𝑀
𝑑𝑧
|
𝑧>𝑧𝑑

, 
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𝛼𝑑𝑀
𝑑𝑧
|
𝑧<𝑧𝑑

, 𝛼𝑑𝑀
𝑑𝑧
|
𝑧=0

). Two variables show significant relationships to 𝛼𝑃𝐿, namely 𝛼𝑑𝑀
𝑑𝑧
|
𝑧>𝑧𝑑

 

and 𝛼𝑧𝑑. The most direct relationship shown is between 𝛼𝑃𝐿 and 𝛼𝑧𝑑 suggesting that the 

duct height variations are the dominant component which is linearly linked to variations in 

propagation. These results align with many past studies (Kerr, 1951; Turton et al., 1988; 

Anderson, 1989; Hitney and Hitney, 1990; Paulus, 1990; Lentini and Hackett, 2015), which 

show that propagation loss is sensitive to duct height. In section 5.1, it is shown that duct 

heights vary linearly, oscillatory, and step-wise over the range of data investigated in this 

study. Although most cases fit a linear trend, it was also shown that sinusoidal variances 

of duct height in range produce rather different propagation patterns than linear variances. 

Thus, in some situations, it may be necessary to model duct height with respect to range 

using a sinusoidal function similar to that used to model surface refractivity gradients with 

respect to range in Equation 19 to further improve duct height estimates and consequently 

propagation predictions. Future in-situ studies should investigate the presence of step 

function distributions of duct height in range to evaluate whether it is a COAMPS® artifact 

or a natural phenomenon. Table 3 also shows a significant weak direct relationship between 

𝛼𝑑𝑀
𝑑𝑧
|
𝑧>𝑧𝑑

and 𝛼𝑃𝐿, which is likely related to the majority of the domain being above the duct 

height and the 𝛼𝑃𝐿 metric being evaluated over the entire domain. Large 𝛼𝑃𝐿 could be 

associated with slight shifts in locations of multipath nulls, so in order to eliminate this 

effect, 𝛼𝑃𝐿 is calculated only within the long range (<45 km) region and the same 

correlation coefficients calculated in Table 3 are illustrated in Table 4. The correlation 

coefficients between 𝛼𝑀 and 𝛼𝑃𝐿 in both Tables 3 and 4 indicate a lack of a linear 

relationship between these two variables. This result suggests that errors in modified 
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refractivity estimation can’t be used to directly infer errors on propagation. Instead, errors 

in duct height and refractive gradients should be used to directly infer errors in PL. Table 

4 shows differing results than those shown in Table 3 where 𝛼𝑑𝑀
𝑑𝑧
|
𝑧>𝑧𝑑

 shows a stronger 

correlation to 𝛼𝑃𝐿 in the long range region than does 𝛼𝑧𝑑, and 𝛼𝑑𝑀
𝑑𝑧
|
𝑧<𝑧𝑑

 is shown to have a 

significant correlation to 𝛼𝑃𝐿. This result is consistent with the aforementioned results 

presented by Lentini and Hackett (2015), which stated that duct height is more influential 

on PL in the short range while duct shape is more influential in the long range. This result 

confirms previous remarks that errors in the estimation of PL in the long range region are 

driven by HRGM errors in the refractivity gradients above the surface more so than the 

estimate of the duct height itself. The inaccuracies are likely due to underlying assumptions 

made by the HRGM that 
𝑑𝑀

𝑑𝑧
|
𝑧 = 𝑧𝑑 − 𝑑𝑧

, 𝜅1, 𝜅2, and m1 are constant. Thus, future studies 

of heterogeneous refractive models should consider a range-varying 
𝑑𝑀

𝑑𝑧
|
𝑧 = 𝑧𝑑 − 𝑑𝑧

, 𝜅1, 

𝜅2, and m1 in order to more accurately predict PL at long ranges. The previously described 

correlation between 𝛼𝑃𝐿and 𝛼𝑧𝑑along with the lack of correlation between duct height 

RMSE and PL RMSE at long range suggests that inaccurate duct heights mainly impact 

the location of multipath nulls and short range low altitude propagation.  

In summary, on-average, the range-dependent parametric refractivity gradient 

model proposed in this study produces accurate estimations of modified refractivity and 

propagation loss. RMSEs of modified refractivity are greater during synoptic fronts and 

lower during cloudy conditions. When modified refractivity RMSEs are large, the HRGM 

tends to underestimate modified refractivity beneath the duct height, and overestimates it 



 

70 

 

above the duct height. The leading cause of discrepancies in the modified refractivity 

estimation is the sinusoidal function used to describe the surface refractive gradients. 

RMSEs of PL using the HRGM become greater in cloudy environments and decrease in 

variability (relative to the mean PL RMSE) during synoptic front events. When 

discrepancies in PL occur, they are typically located at the locations of multipath nulls and 

above typical duct heights in the long range region. Foremost, the leading cause of error in 

the propagation estimation by the HRGM in the entire domain is the model’s predictive 

accuracy regarding duct height variations with respect to range, which also have a 

significant effect on the location of multipath nulls. PL discrepancies in the long range 

region appear to be mostly associated with errors in the refractivity gradients above the 

surface. Thus, in order to accurately predict propagation in horizontally heterogeneous 

environments throughout a large domain, the behavior of the duct height and refractivity 

gradients over range need to be modeled accurately in order to obtain accurate propagation 

in the short and long ranges, respectively, and should be the foremost concern of future 

heterogeneous parametric models used to solve radar inversion problems.   

  



 

71 

 

 

Figure 13. Modified refractivity with respect to range from four arbitrarily chosen 

environments taken from COAMPS®-NAVSLaM blended profiles. (a) shows 

COAMPS®-NAVSLaM data from forecast for October 11, 2015 model run 12:00Z 

forecast hour 9, (b) shows COAMPS®-NAVSLaM data from forecast for October 12, 2015 

model run 00:00Z forecast hour 10, (c) shows COAMPS®-NAVSLaM blended data from 

forecast for October 14, 2015 model run 12:00Z forecast hour 11, and (d) shows 

COAMPS®-NAVSLaM blended data from forecast for October 19, 2015 model run 

00:00Z forecast hour 6. Most variations of modified refractivity in range have an 

oscillatory distribution. 
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Figure 14. Spectrograms showing power spectral densities (PSDs) of modified refractivity 

over range for each altitude shown in Figure 13, respectively.  
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Figure 15. Histograms of peak wavenumbers (e.g., Figure 14) for various atmospheric 

stability conditions: a) unstable, b) stable, and c) free convective conditions (see Section 

4.3 for descriptions of stability classifications).  
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Figure 16. Modified refractivity profiles of environments whose surface modified 

refractivity increases in range (left) and the differences between propagation loss produced 

using the varying environments shown and those propagation loss patterns produced by 

using the modified refractivity profile at the first range (range = 0km) and assuming 

horizontal homogeneity (right). (a) shows an environment where surface modified 

refractivity increases by 2 M-units every 10 kilometers over a range of 60 kilometers, and 

(b) shows the resulting propagation loss difference. (c) shows an environment where 

surface modified refractivity increases by 5 M-units every 10 kilometers over a range of 

60 kilometers, and (d) shows the resulting propagation difference. (e) shows an 

environment where surface modified refractivity increases by 10 M-units every 10 

kilometers over a range of 60 kilometers, and (f) shows the resulting propagation 

difference.  
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Figure 17. Modified refractivity profiles of environments whose duct heights vary linearly 

in range (left) and the differences between propagation loss produced using the 

environments shown, and those propagation loss patterns using the modified refractivity 

profile at the closest range (range = 0 km) and assuming horizontal homogeneity (right). 

(a) shows an environment where duct height linearly varies by 1 m over 60 km range, and 

(b) shows the resulting propagation loss difference. (c) shows an environment where duct 

height linearly varies by 5 m over 60 km range, and (d) shows the resulting propagation 

loss difference.  
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Figure 18. Examples of different functional forms of variations of duct height with respect 

to range. All data are from COAMPS®-NAVSLaM blended forecasts. (a) Exemplifies a 

constant distribution and comes from a forecast taken for October 18, 2015 using model 

run 00:00Z forecast hour 5. (b) Exemplifies an oscillatory distribution and comes from a 

forecast taken for October 10, 2015 using model run 00:00Z forecast hour 6. (c) 

Exemplifies a linear distribution and comes from a forecast taken October 23, 2015 using 

model run 00:00Z forecast hour 9. (d) Exemplifies a step distribution and comes from a 

forecast taken for October 23, 2015 using model run 12:00Z forecast hour 10.  
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Figure 19. Duct height distributions with respect to range (left) and the corresponding 

modified refractivity profiles over range (see legend) (right).  
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Figure 20. Differences between propagation loss produced using environments shown in 

Figure 19a and 19b for (a), and Figure 19c and 19d for (b) and those propagation loss 

patterns produced by using the corresponding modified refractivity profile at the first range 

(range = 0 km) and assuming horizontal homogeneity. 
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Figure 21. Gradient Richardson number (𝑅𝑖̅̅̅) for each forecast classified by functional 

form of duct height variations in range: flat (a), sinusoidal (b), linear (c), and step (d) 

functional forms. The horizontal black lines in each subplot show important stability 

categorization cutoffs. The horizontal black line in (a) and (d) show where 𝑅𝑖̅̅̅ = 0 which 

illustrates where forecasts go from stable to unstable, while the horizontal black lines in 

(b) and (c) show where 𝑅𝑖̅̅̅ = -2 which illustrates where forecasts go from unstable to free 

convective.  
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Figure 22. Histogram of the correlation coefficients between the gradient Richardson 

number (𝑅𝑖̅̅̅(𝑟)) and duct height as a function of range. 
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Figure 23. dM/dz with respect to range and height of a COAMPS®-NAVSLaM blended 

forecast for October 10, 2015 model run 00:00Z forecast hour 11. Although the blended 

data have decimeter vertical resolution, for visualization purposes, only estimations every 

0.5 meter are shown starting at 0.4 meters in altitude.  
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Figure 24. Examples of refractivity gradients with respect to altitude at each range below 

the duct height (a), and above duct height (b), where duct height varies with range as shown 

in (c). Data shown is from an October 26, 2015 00:00Z model run at forecast hour 6.  
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Figure 25. Examples of different categories of variations of dM/dz with respect to range 

within the lowest 10 m of altitude. All data are from COAMPS®-NAVSLaM blended 

forecasts. (a) Exemplifies a linear environment using a forecast for October 24, 2015 using 

model run 12:00Z forecast hour 7. (b) Exemplifies an oscillatory environment using a 

forecast for October 15, 2015 using model run 12:00Z forecast hour 10. (c) Shows an 

environment with both linear and sinusoidal variations from a forecast for October 30, 2015 

using model run 00:00Z forecast hour 1.  
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Figure 26. dM/dz profiles with respect to range (left; a, c, and e) and the corresponding 

modified refractivity profiles over range (see legend) (right; b, d, and f).  



 

85 

 

 

Figure 27. Differences between propagation loss produced using environments shown in 

Figure 26a and 26b for (a), Figure 26c and 26d for (b) and Figure 26e and Figure 26f for 

(c), and those propagation loss patterns produced by using the corresponding modified 

refractivity profile at the first range (range = 0 km) and assuming horizontal homogeneity.  
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Figure 28. Histograms of peak wavenumbers of spectra of surface level dM/dz profiles in 

range classified by stability. (a) shows peak wavenumbers in free convective environments, 

(b) shows peak wavenumbers in stable environments, and (c) shows peak wavenumbers in 

unstable environments. It should be noted that a majority of the environments investigated 

in this study are unstable environments.  
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Figure 29. Estimation of the amplitude of sinusoidal range variations of dM/dz for each 

COAMPS®-NAVSLaM blended profile taken during the CASPER-East field experiment. 

(a) shows the maximum difference between refractive gradients and the mean refractive 

gradient over all ranges and altitudes while (b) shows the minimum difference.  
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Figure 30. dM/dz profiles with respect to range (left) and the modified refractivity profiles 

created by the respective refractive gradients (right). (a, c, e) Show refractive gradients 

where amplitudes of sinusoidal refractive gradients with respect to range are (a) 1.23%, (b) 

23.5%, or (c) 85.6% larger or smaller than the mean refractive gradient over range at each 

altitude while (b, d, f) shows the corresponding modified refractivity profile generated by 

those changes in refractive gradients shown in (a, c, e) respectively. The colorbar on the 

left goes with panels (a), (c), and (e), and the legend on the right goes with panels (b), (d), 

and (f).  
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Figure 31. Differences between propagation loss produced using environments shown in 

Figure 30a and 30b for (a), Figure 30c and 30d for (b) and Figure 30e and Figure 30f for 

(c), and those propagation loss patterns produced by using the modified refractivity profile 

at the first range (range = 0 km) and assuming horizontal homogeneity. 
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Figure 32. Histogram of the range at which the (maximum) amplitude of dM/dz in range 

occurs for all COAMPS®-NAVSLaM blended profiles.  
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Figure 33. Histogram of the root-mean-square-error between duct height in range 

estimated using a linear model (Equation 18), and duct height in range for COAMPS®-

NAVSLaM blended profiles. 
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Figure 34. Histograms of the root-mean-squared-errors between the surface refractivity 

gradients and the non-linear regression fits to those surface refractivity gradients. (a) shows 

the root-mean-squared errors calculated using non-linear regression fits to Equation 21 and 

(b) shows the root-mean-squared errors calculated using non-linear regression fits to 

Equation 19 for the z=0 layer.  
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Figure 35. Histogram of percent error, E (Equation 12) of refractivity gradients estimated 

over range by the HRGM layer 0<z<zd (Equation 19) and COAMPS®-NAVSLaM blended 

data. 
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Figure 36. Histogram of percent error, E (Equation 12) of refractivity gradients estimated 

over range by the HRGM layer z>zd (Equation 19) and COAMPS®-NAVSLaM blended 

data. 
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Figure 37. Range-dependent M profiles produced by the HRGM (a) and the COAMPS-

NAVSLaM blended data (b) for October 10, 2015 at 1100Z.  
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Figure 38. RMSEs between modified refractivity generated via integral form of the 

HRGM (Equation 20) and that of the COAMPS®-NAVSLaM blended data.  
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Figure 39. Histograms of residuals (a) and RMSEs (b) between modified refractivity 

calculated using the integral form of the HRGM (Equation 20) and COAMPS®-

NAVSLaM blended data.   
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Figure 40. Forecast-averaged residuals (Equation 13) of modified refractivity between all 

HRGM-estimated (Equations 19 and 20) forecasts and COAMPS®-NAVSLaM blended 

forecasts.  
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Figure 41. Examples of modified refractivity residuals between modified refractivity 

estimated using the HRGM and that of the COAMPS®-NAVSLaM blended data. (a) and 

(b) illustrate instances where modified refractivity estimations are rather good with 

residuals <3 M-units in the entire domain while (c) and (d) illustrate instances with higher 

residuals >3 M-units in the entire domain. Residuals shown are calculated using COAMPS-

NAVSLaM blended forecasts from: (a) November 3rd model run 00:00Z at forecast hour 

3, (b) November 3rd model run 00:00Z at forecast hour 9, (c) October 25th model run 12:00Z 

at forecast hour 6, and (d) October 25th model run 12:00Z at forecast hour 10.  
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Figure 42. Histograms of residuals (a) and RMSEs (b) between propagation loss using the 

integral form of the HRGM (Equation 20) and that using the COAMPS®-NAVSLaM 

blended data. 
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Figure 43. RMSEs between PL estimated based-on refractivity from the integral form of 

the HGRM and that of the COAMPS®-NAVSLaM blended data after smoothing the time 

series with a 5 point/forecast running average filter.  
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Figure 44. Forecast-averaged residuals between propagation loss based-on the integral 

form of HRGM (Equation 20) forecasts and that corresponding with COAMPS®-

NAVSLaM blended forecasts.  
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Figure 45. Examples of residuals between propagation loss estimated using the integral 

form of the HRGM (Equation 20) and that using COAMPS®-NAVSLaM blended data. (a) 

and (b) illustrate instances where PL predictions are rather good with residuals <9 dB 

throughout the entire domain while (c) and (d) illustrate instances with large residuals (>9 

dB) throughout the entire domain. Residuals shown are calculated using PL based-on 

COAMPS-NAVSLaM blended forecasts from: (a) November 3rd model run 00:00Z at 

forecast hour 4, (b) November 3rd model run 00:00Z at forecast hour 5, (c) October 20th 

model run 00:00Z at forecast hour 1, and (d) October 20th model run 00:00Z at forecast 

hour 2.  
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Table 2. Correlation coefficients between RMSEs of M (𝛼𝑀) throughout the entire 

domain and RMSEs of duct height (𝛼𝑧𝑑) and refractivity gradients estimated using each 

function which comprises the HRGM (𝛼𝑑𝑀
𝑑𝑧
|
𝑧>𝑧𝑑

, 𝛼𝑑𝑀
𝑑𝑧
|
𝑧<𝑧𝑑

, and 𝛼𝑑𝑀
𝑑𝑧
|
𝑧=0

). 

Model Parameter  Correlation Coefficient with RMSE 

of Modified Refractivity 

Significance (P-Value) 

𝛼𝑑𝑀
𝑑𝑧
|
𝑧>𝑧𝑑

  -0.12 0.01 

𝛼𝑧𝑑 0.15 0.00 

𝛼𝑑𝑀
𝑑𝑧
|
𝑧<𝑧𝑑

  -0.16 0.00 

𝛼𝑑𝑀
𝑑𝑧 |𝑧=0

 0.71 0.00 
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Table 3. Correlation coefficients between RMSEs of PL (𝛼𝑃𝐿) throughout the entire 

domain and RMSEs of duct height (𝛼𝑧𝑑), RMSEs of refractivity gradients estimated using 

each function which comprises the HRGM (𝛼𝑑𝑀
𝑑𝑧
|
𝑧>𝑧𝑑

, 𝛼𝑑𝑀
𝑑𝑧
|
𝑧<𝑧𝑑

, and 𝛼𝑑𝑀
𝑑𝑧
|
𝑧=0

) , or the 

RMSE of modified refractivity (𝛼𝑀). 

Model Parameter Correlation Coefficient with RMSE 

of Propagation Loss 

Significance (P-Value) 

𝛼𝑑𝑀
𝑑𝑧
|
𝑧>𝑧𝑑

  0.10 0.03 

𝛼𝑧𝑑  0.41 0.00 

𝛼𝑑𝑀
𝑑𝑧
|
𝑧<𝑧𝑑

  0.00 0.87 

𝛼𝑑𝑀
𝑑𝑧
|
𝑧=0

  0.01 0.85 

𝛼𝑀  0.04 0.38 
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Table 4. Correlation coefficients between RMSEs of PL (𝛼𝑃𝐿) in the long range (>45 km) 

and RMSEs of duct height (𝛼𝑧𝑑), RMSEs of refractivity gradients estimated using each 

function which comprises the HRGM (𝛼𝑑𝑀
𝑑𝑧
|
𝑧>𝑧𝑑

, 𝛼𝑑𝑀
𝑑𝑧
|
𝑧<𝑧𝑑

, and 𝛼𝑑𝑀
𝑑𝑧
|
𝑧=0

), or the RMSE of 

modified refractivity (𝛼𝑀). 

Model Parameter Correlation Coefficient with 

RMSE of Propagation Loss in 

Long Ranges (>45 km) 

Significance (P-value) 

𝛼𝑑𝑀
𝑑𝑧
|
𝑧>𝑧𝑑

  0.47 0.00 

𝛼𝑧𝑑  0.14 0.00 

𝛼𝑑𝑀
𝑑𝑧
|
𝑧<𝑧𝑑

  0.33 0.00 

𝛼𝑑𝑀
𝑑𝑧
|
𝑧=0

  -0.07 0.13 

𝛼𝑀  -0.02 0.59 
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6.0 Summary and Conclusions 

 Radar is commonly used in remote sensing applications through its use of EM 

waves to detect a variety of targets over a wide range of distances. A radar system’s 

performance is affected by the environment of its operation and many radars operate in the 

MABL, which is the environment of focus for this study. Refraction can cause EM waves 

to change their direction of propagation resulting in uncertainties in radar measurements. 

In severe cases of refraction, known as ducting, the EM waves’ propagation path is bent 

towards the surface and can cause holes in radar detection at high altitudes and/or extension 

of detection ranges at low altitudes. Thus, methods to predict the occurrences of these 

environments are important to improving technologies such as radar. Inversion methods 

are one way of predicting such environments whereby the environment is reverse 

engineered from the radar measurement itself, but they rely on parametric models to 

describe the refractive environment. Typically, these parametric models only account for a 

single refractivity profile, which is assumed to be homogeneous in range. Although the 

homogeneous assumption has merit, prior research has also shown that horizontal 

variations in atmospheric conditions can cause significant effects on radar wave 

propagation (Bean and Cahoon, 1959; Goldhirsh and Dockery, 1998; Brooks et al., 1999). 

Thus, there is a need to develop a parametric range-dependent model for potential use in 

inversion methods aimed at recovering modified refractivity in horizontally heterogeneous 

environments.  
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In this study, a parametric model is developed, referred to as the HRGM, by 

analyzing blended data from a numerical weather prediction model (COAMPS®; Hodur, 

1997) and a semi-empirical bulk estimation model (NAVSLaM; Frederickson, 2016) to 

evaluate heterogeneous refractivity environments during evaporative ducting conditions. 

The accuracy of environments created using the blended data are scrutinized by comparing 

modified refractivity estimates of other semi-empirical bulk estimation models (COARE 

3.0; Fairall et al., 1996; Fairall et al., 2003) and measured environmental data from the 

CASPER-East field experiment (Wang et al., 2018). These comparisons reveal that a 

majority of cases (>80%) show similar modified refractivity variations with height; thus, 

verifying the use of COAMPS®-NAVSLaM blended estimates to analyze refractive 

characteristics in range for this study. Further comparisons between estimation methods 

are outlined in Pastore et al. (2020).  

 A scale characterization study on evaporation ducts estimated via COAMPS®-

NAVSLaM blended data is conducted on variations of modified refractivity, duct height, 

and refractive gradients with respect to range. Typical distributions of modified 

refractivity, duct height, and refractivity gradients over range and their relation to 

atmospheric stability via gradient Richardson number are investigated. A radar wave 

propagation simulation (VTRPE; Ryan, 1991) is used to determine which range-varying 

variables and their resulting distributions have the greatest impact on propagation.  

Modified refractivity variations in range throughout the study period are typically 

characterized as oscillatory and suggest that the peak wavenumbers of the sinusoidal 

variations are related to atmospheric stability. It is shown, however, that shifting values of 

surface modified refractivity by different constants over range relative to an assumed 
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homogeneous environment changes propagation loss by less than 1 dB, indicating minimal 

effects on propagation are caused by shifting modified refractivity profiles over range. 

Thus, the parametric model developed for this study foregoes directly modeling refractivity 

in favor of parametrically describing refractivity via relationships of duct heights with 

respect to range and refractive gradients with respect to range and height. 

A majority (77%) of duct height variations in range are found to be linear, and 

variations illustrate a dependence on atmospheric stability. The mean standard deviation of 

duct height over range for all examined forecasts is 0.94 m and 20% of the forecasts show 

a standard deviation greater than 1 m. On the contrary to surface values of modified 

refractivity, duct heights which vary by amounts as small as 1 m over 60 km are shown to 

have non-negligible effects on propagation. This fact suggests that most environments from 

this blended data set present an effect on propagation, which is caused by the variance of 

duct height over range. Furthermore, linearly distributed duct heights with respect to range 

typically exhibit stronger effects on propagation than other observed distribution types such 

as oscillatory or step-like variations. 

Refractive gradients with respect to range are found to follow sinusoidal 

distributions with the phase of the sinusoidal distribution differing depending on the 

forecast but is relatively similar with height for the same forecast. Sinusoidal variations 

typically are dominated by three peak wavenumbers in unstable conditions: 0.0158 km-1, 

0.0316 km-1, and 0.0474 km-1, indicating that longer length scales cause the most variation 

of refractivity gradients in range. Similar to variations of modified refractivity, peak 

wavenumbers of the sinusoidal variations of refractivity gradients suggest a dependence 

on atmospheric stability. Also, refractive gradients which are sinusoidal over range are 
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shown to result in larger variations in propagation over larger areas than linear variations. 

Sinusoidal amplitudes of refractivity gradients in range have non-negligible effects on 

propagation and refractive gradients with respect to height all show similar trends above 

the surface.  

The results found from these characterization studies are used to create a 

heterogeneous parametric refractivity gradient model (HRGM), which consists of a one-

way coupled set of equations (Equations 18 and 19). Using distributions which were shown 

to cause greater impact on propagation, a linear function is used to estimate the duct height 

with respect to range (Equation 18), a sinusoidal refractivity gradient function is used to 

describe surface refractive gradients with respect to range (Equation 19, z=0 layer), and 

separate exponential decay functions, which describe amplitude decay of refractivity 

gradient variations with respect to height above (Equation 19, z>zd layer) and below the 

duct height (Equation 19, 0<z<zd layer) are used to model their respective altitude layers. 

These functions which comprise the HRGM allow an estimation of a refractive gradient 

environment that varies in both height and range. 

The HRGM contains 11 parameters which can be solved in a radar inversion 

problem. The 11 parameters are as follows: the rate of duct height change in range (𝜉), the 

duct height at r = 0 km (𝑧𝑑0), amplitudes of sinusoidal variances of refractive gradients at 

the surface with respect to each predetermined wavenumber (𝑎1, 𝑎2, 𝑎3), the initial phase 

of the surface refractive gradient (𝜑), the mean surface refractivity gradient about which 

the surface refractive gradient oscillates (𝜇𝑑𝑀
𝑑𝑍

), the decay rate of refractivity gradients with 

respect to height below the duct height (𝜅1), the refractivity gradient at a discrete interval 
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below the duct height (
𝑑𝑀

𝑑𝑧
|
𝑧 = 𝑧𝑑 − 𝑑𝑧

 ), the decay rate of refractivity gradients with 

respect to height above the duct height (𝜅2), and the mixed layer slope (𝑚1). The 

refractivity gradients estimated with the HRGM can be integrated to obtain a set of range-

dependent modified refractivity profiles in range given surface measurements of modified 

refractivity over range, used as a lower boundary condition. 

Each layer of the HRGM is tested via RMSE between COAMPS®-NAVSLaM 

blended environments and the HRGM predictions for each layer. The developed linear 

function for duct height (Equation 18) typically illustrated an RMSE (𝛼𝑧𝑑) of less than 0.5 

m, which suggests a linear function could describe most of the duct heights with respect to 

range, even those that didn’t show a linear trend. The developed sinusoidal function which 

described refractive gradients at the surface (Equation 19, z = 0 layer) showed a majority 

of RMSEs (𝛼𝑑𝑀
𝑑𝑧
|
𝑧=0

) between 0 and 15 M-units/m, suggesting that surface refractive 

gradients can be accurately modeled using a sinusoidal function such as Equation 19 for 

the z = 0 layer. The developed decay function that describes refractive gradients with 

respect to height below the duct height (Equation 19, 0 < z < zd layer), which further 

assumes horizontal homogeneity of the decay rate (𝜅1) and the refractivity gradient a 

discrete interval below the duct height (
𝑑𝑀

𝑑𝑧
|
𝑧 = 𝑧𝑑 − 𝑑𝑧

), did not accurately capture the 

decay in all cases. Lastly, the developed decay function for refractive gradients with respect 

to height above the duct height (Equation 19, z > zd layer) where 𝑚1 and 𝜅2 are assumed 

constant in range, produced accurate representations of refractive gradients above the duct 

height.  
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The HRGM is tested for accuracy by analyzing its estimated modified refractivity 

as well as its associated propagation loss to modified refractivity of COAMPS®-

NAVSLaM blended data and their resulting propagation loss. On average, the HRGM was 

able to accurately produce estimations of modified refractivity and propagation loss. For 

this data, RMSEs of the modified refractivity may be greater during synoptic fronts and 

lower during cloudy conditions. The HRGM is shown to underestimate modified 

refractivity beneath the duct height, and overestimate it above the duct height, but often 

these are small biases. The leading cause of discrepancies in the modified refractivity 

estimation is the sinusoidal function used to describe the surface refractive gradients.  

In contrast, for this data, RMSEs of PL produced using the HRGM may become 

greater in cloudy environments and decrease during synoptic front events. Discrepancies 

in PL typically occur in the multipath nulls and above typical duct heights in the long range 

region, but often the latter are relatively small discrepancies. Foremost, the leading cause 

of error in the propagation estimation by the HRGM in the entire domain is the model’s 

prediction of duct heights with respect to range, while the leading cause of error at long 

ranges is estimation of refractivity gradients above the surface. Thus, in order to accurately 

predict propagation in horizontally heterogeneous environments most accurately 

throughout the entire domain, the behavior of the duct height over range needs to be 

modeled accurately and should be of the foremost concern of future heterogeneous 

parametric models used to solve inversion problems. 

Although, on average, the HRGM seems to accurately estimate modified 

refractivity and PL, there are still quite a few limitations to this model that could be 

addressed with future research. First and foremost, propagation loss discrepancies seem to 
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rely on the behavior of duct height with respect to range. Currently, the HRGM assumes 

only linear distributions, future work should consider more complex functions for 

estimating duct height variations in range. Another limitation of the HRGM is that it 

requires surface estimates of modified refractivity over range, which is currently a difficult 

measurement to make in-situ as it would require running a transect of SST measurements 

over the range of the radar. However, it is possible that a single surface measurement of 

modified refractivity could be used, and thus, future research could investigate whether 

using a single measurement of surface modified refractivity could suffice. On the same 

note, future research could also investigate novel ways to estimate surface refractivity over 

extended ranges. Another large limitation of this study is that the HRGM has only been 

examined for one location, off the coast of Duck, NC. To further verify the model, multiple 

locations should be examined to determine if the variations illustrated by the COAMPS®-

NAVSLaM blended data used for this study are broadly applicable. Also, although this 

study investigates typical variations of refractivity parameters in range, a more thorough 

sensitivity analysis of the propagation to refractivity parameters could be done on 

variations of several refractivity parameters over range using a global sensitivity method 

like that performed in Lentini and Hackett (2015). Lastly, M profiles produced by the 

HRGM have a “kink” like feature in the profiles at z~zd, which may impact PL predictions. 

Further research should consider applying a smoothing function to the M profile before 

using it to estimate PL to determine if the PL discrepancies observed in this study are 

reduced. 

Although containing a few shortcomings, this study provides a novel parametric 

refractivity model which can be used to solve radar inversion problems in horizontally 
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heterogeneous refractive environments commonly seen in coastal zones, at air mass 

boundaries associated with synoptic fronts, areas effected by clouds, thunderstorm anvil 

shadows, or heavy rainfall. Future radar inversion studies should consider using the HRGM 

to parameterize such refractive environments where heterogeneity is likely to occur.  
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