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Abstract 

The impairment of regional water quality in Long Bay is an episodic occurrence 

that has been documented for over a decade. According to one explanation, the 

occurrence of these events is hypothesized to be the combination of local, terrestrially 

derived inputs and water-column stratification in the nearshore zone. A portion of these 

inputs may discharge as surface run-off through estuaries ending in sandy transitional 

environments termed “swashes”. An investigation into the fate of land-derived materials 

through swashes utilize a linear conservative mixing model to describe the non-

conservative behavior of materials in the overlying water and pore-water. This model 

relies on two endmembers to form a conservative mixing line across an environmental 

gradient along a transect located within the primary channel of the swash. Measured 

concentrations are plotted against the conservative mixing line to assess the chemical 

changes in properties which either result in the generation or removal of these properties 

with respect to the transect. The non-conservative behavior of these properties forms the 

basis for assessment on the role of a permeable sand column in modifying land-derived 

inputs. Highly permeable sediments (2.91.110-11 m2) compose the sandy transect with 

which visually observed tidally-driven currents interact. Higher pore-water nutrient 

concentrations (dissolved inorganic nitrogen = 3-30 mol/L) compared to overlying-

water concentrations (3-30 mol/L vs. 0-20 mol/L, respectively, for dissolved inorganic 

nitrogen) support the assumption that organic matter, filtered by the sandy sediment of 

the primary channel, is respired and nutrients are generated. Sedimentary chlorophyll 

concentrations are at least ten times as high as overlying-water chlorophyll 
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concentrations (0-3 g/cm3 vs. 0-0.02 g/cm3, respectively), consistent with a “benthic 

nutrient filter”, whereby microphytobenthos are intercepting pore-water nutrients that are 

being transported upwards towards the overlying water. During periods of expected high 

primary productivity, the swash is a source of overlying-water oxygen and chlorophyll a, 

while at periods of expected low productivity, the swash is a source for nutrients and a 

sink for chlorophyll a.  This transect study of the shoreline segment of Singleton Swash 

documents the role of a permeable sand column functioning as a biofilter.  Inputs of 

nutrients from surface run-off (35 mol/L and 4 mol/L for dissolved inorganic nitrogen 

and dissolved phosphate, respectively) resulted in high sedimentary chlorophyll 

concentrations but also a sink in both sedimentary chlorophyll and overlying-water 

oxygen, as expected in eutrophic conditions. These findings imply that the presence of a 

highly permeable sand column may be serving as an effective mitigation strategy for 

land-derived inputs of nutrients prior to reaching the coastal ocean, and must be given 

consideration in coastal engineering designs. 
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1 INTRODUCTION 

1.1 Land-derived inputs to the coastal ocean 

Populations in coastal regions of the US are continuously expanding at a rate of 

almost 10 % every ten years (NOAA, 2013).  As land-use changes to accommodate 

growth, the increase in impervious surfaces results in a more rapid delivery of pollutants 

into water bodies and a decrease of freshwater infiltration into groundwater (Arnold and 

Gibbons, 1996). In shallow marine environments, excess nutrient input can result in the 

eutrophication of the water column and in severe cases, hypoxic conditions may develop 

(Howarth et al., 2011). These anthropogenic stressors alter the relative abundance of 

specific taxa and are strongly related to the degree of sediment contamination (Holland et 

al., 2004).  It is therefore important to understand the processes that affect the magnitude 

of nutrient loading into coastal regions, specifically, natural features (estuaries and tidal 

creeks) that may mitigate the amount of nutrients entering the coastal ocean (Hedges and 

Kiel, 1995). 

The impact of terrestrial systems on the coastal ocean is an interdisciplinary and a 

well-studied topic due to the direct effects of discharged materials. In Long Bay, South 

Carolina, episodic hypoxia has been investigated in multiple studies to describe the origin 

of these low-oxygen events. Two different explanations have been proposed for these 

hypoxic phenomena: 1) Discharge of highly saline, anoxic pore-water from offshore 

carbonate aquifers and advection of this water mass onshore by favorable winds 

(Peterson et al., 2016);  2) A combination of local, terrestrially derived inputs constrained 
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to the nearshore marine environment by a lack of mixing in the semi-enclosed Long Bay 

result in a drop in oxygen concentrations to hypoxic levels (Sanger et al., 2012; Troup et 

al., 2017). The latter theory suggests that tidal creeks and inlets play a large role in the 

delivery of matter to the nearshore zone. These transitional environments modify 

materials as they are transported into the coastal ocean and have a considerable effect on 

benthic and coastal ecology (Hedges and Kiel, 1995; Huettel et al., 2014). Understanding 

the role of sedimentary processes in mitigating anthropogenic loading to the coastal 

ocean will help guide future policies needed to sustain healthy coastal ecosystems.  

1.2  Swashes in the Grand Strand, South Carolina (SC) 

Estuarine tidal creeks are one of many conduits for freshwater run-off into the 

coastal ocean and represent the continuum from estuary to coastal marine environments 

(Smith and Sanger, 2015). The Grand Strand of SC spans approximately 100 kilometers 

(km) of high-energy sandy beaches (Barnhardt et al., 2009). Tidal creeks in the Grand 

Strand of South Carolina end at these broad sandy beaches and their flows, subjected to 

nearshore sediment transport processes, form transient meandering features termed 

“swashes” (Barnhardt et al., 2009). An extensive investigation of tidal creeks (ending in 

swashes) by Smith and Sanger (2015) concluded that a portion of land-derived materials 

were retained in their respective watershed prior to arrival to the swashes and discharge 

into the coastal ocean. The biogeochemical functions of the sandy swashes of estuarine 

tidal creeks are not fully understood, however they may contribute to episodic hypoxia in 

Long Bay (Sanger et al., 2012; Smith and Sanger, 2015). 
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Many sandy beaches in the region are susceptible to erosion, exacerbated by sea 

level rise (Barnhardt et al., 2009). Migrating swashes may amplify the problem by 

threatening to erode private property as well as preventing flushing of estuaries 

(Hoffnagle, 2015). “Soft” remediation efforts may include realignment of the tidal 

channels and reconstruction of beach profiles during renourishment, while “hard” 

armored protection involves building solid-bottom culverts that would stabilize the tidal 

channel, or constructing seawalls (USACE and DHEC, 2018). Examples of the above are 

shown in Figure 1 for Singleton Swash, SC. Impervious culverts would prevent natural 

biogeochemical transformations from occurring in the sandy sediment column and thus 

would increase the discharge of dissolved and particulate constituents into the coastal 

ocean. The environmental effect from these engineering solutions may be overlooked in 

sandy intertidal regions, where the critical living communities are often burrowing 

(infauna), microscopic, or transient, and therefore not immediately evident to the naked 

eye (Speybroeck et al., 2006). Consideration must be given to these intertidal 

communities, as they facilitate the earliest transformations of land-derived inputs carried 

to the coastal ocean. 
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Figure 1. Singleton Swash shown in three key phases. a) Extreme southward migration, b) beach 

nourishment and stabilization activities, c) post-nourishment and realignment. d) Hard seawall 

constructed as a last measure of protection for the Dunes Golf Clubhouse. e) Cross-sectional 

schematic of the proposed concrete culvert (USACE and DHEC, 2014). f) Aerial schematic of the 

proposed culvert (USACE and DHEC, 2014). 

 

a) 

b) 

d) 

e) 

f) c) 
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1.3 Key processes in sandy sediments of swashes 

1.3.1 Physical exchange 

Swashes are primarily sandy environments and are heavily influenced by 

nearshore processes. The physical reworking of sediments causes fine grain sediments to 

be transported away from the site of high energy (swashes), resulting in a highly 

permeable sandy environment (Hjulestrom, 1939; Boudreau et al., 2001). Another key 

feature in energetic sandy environments is bathymetry. In addition to burrows and debris, 

flows over non-cohesive sandy sediments will generate ripples, which contribute to the 

bathymetry of this setting (Allen, 1968).  

When the aforementioned setting is present, bottom boundary layer flows and 

sediment bathymetry result in significant interactions between sand and the overlying 

water column (Huettel et al., 1996). These interactions are characterized by turbulent, 

advection-driven flows, which induce vertical transport across the sediment-water 

interface (SWI; Berg et al., 2003; Chipman et al., 2016). These flows over sediment 

bathymetry induce pressure gradient forces, driving overlying water into the sediment 

upstream of bathymetric features and upwelling pore-water downstream of these features 

(Huettel et al., 1996; Elliot and Brooks, 1997). Pressure gradients as small as 1 Pa/cm 

over small sediment ripples have been shown to force water several centimeters into the 

sediment and upwell pore-water from as deep as 10 centimeters into the water column 

(Huettel and Gust, 1992). This physical exchange transports matter, both particulate and 

dissolved, through permeable sediments at orders-of-magnitude higher rates than 
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gravitational settling and molecular diffusion and may be an effective mixing process 

between the overlying water and pore-water of permeable sediments (Huettel et al., 1998; 

Precht and Huettel, 2004).  

1.3.2 Chemical transformations 

The rapid turnover of materials in permeable sand is reflected by low organic 

carbon and nutrient concentrations in the overlying water and uppermost sediment layer 

(Webb and Theodor, 1968; Huettel et al., 1998). This exchange is coupled with benthic 

ecology and has been studied extensively over a variety of spatial and temporal scales 

(Boulton et al., 1998; Schutte et al., 2013; Chipman et al., 2016; Kim et al., 2017).  In 

swashes, where physical transport is present, and the water column is shallow, 

transformations of organic materials by microbial respiration are likely to occur in the 

sediment rather than the water column (Berner, 1980). Sedimentary respiration (left-to-

right direction in Eq. 1, based on Froelich et al., 1978, using Redfield-Richards 

stoichiometry) releases dissolved inorganic nutrients into the pore-water where they may 

be subject to physical transport: 

 (CH2O)106(NH3)16 (H3PO4) + 138O2  106CO2 + 16HNO3 + H3PO4 + 122H2O 1 

Without any further transformations, these dissolved inorganic nutrients would be 

circulated back into the water column by advective pore-water flows (Webb and 

Theodor, 1968). However, a highly abundant biofilm of microphytobenthic communities, 

on the order of millions of cells per cubic centimeter, are able to photosynthesize in the 

top 5 millimeters (mm) of photic permeable sediment (MacIntyre et al., 1996). This 

biofilm may assimilate dissolved inorganic nutrients derived from the sedimentary 
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nutrient pool during photosynthesis (right-to-left direction in Eq. 1), acting as a living 

filter (Webb and Theodor, 1968; Savant et al., 1987).  These benthic primary producers 

have been shown to behave analogous to their phytoplanktonic counterparts and with 

respect to sandy settings may be as abundant if not more abundant than phytoplankton 

(Pinckney et al., 1995). 

1.3.3  Transformations along a freshwater-seawater transition 

Chemical processes occurring in estuaries, where freshwater encounters and 

mixes with seawater, can be evaluated using the non-conservative mixing approach to 

describe the in-situ production or removal of a material by physical and chemical 

processes with respect to a conservative tracer such as salinity (Libes, 2009). Physical 

mixing between two distinct endmembers results in intermediate concentrations of a 

chemical, predicted by the chemical’s concentration in the two endmembers and their 

volume mixing ratio at a specific location. In the case where physical mixing is the 

dominant process along this gradient, the intermediate concentrations fall on a straight 

line, representing conservative mixing. If measured concentrations lie above or below the 

conservative mixing line, the net outcome of all other processes affecting the chemical in 

this area is addition (production) or removal (consumption), respectively (Figure 2) 

(Berner and Berner, 1987). While this method has been extensively applied to large 

estuaries (Raymond et al., 2000), it may also be proven useful as an indicator of changes 

in both overlying-water and sedimentary concentrations in smaller features such as 

swashes. 
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Figure 2. Diagram of non-conservative mixing adapted from Berner and Berner (1987). 

1.4 Study objectives 

Our study examines the role of a swash, the sandy transitional zone between a 

marsh and the coastal ocean, in biogeochemical transformations of land-derived inputs 

from a heavily modified urban watershed. A high-resolution transect was sampled 

throughout the swash’s primary channel across five different sampling dates to identify 

changes in a suite of water-column and sedimentary parameters with particular attention 

to the function of the underlying permeable sand column. The chemical and biological 

change in concentrations of various dissolved nutrients and particulate materials in the 

overlying water and in the sediment along the transect is supplemented by assessing the 

non-conservative behavior of these nutrients and materials. In addition, the character of 

the above under seasonal variation in light and temperature is investigated. Our findings 

form the basis for understanding how sandy transitional settings mitigate the impact of 

terrestrially derived inputs on coastal-ocean water quality in a relatively under-studied 

environment. 

Freshwater 
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2 METHODS 

2.1 Study area 

Singleton Swash, a heavily modified estuarine “swash” typical of others in the 

Grand Strand of South Carolina (Smith and Sanger, 2015) was selected as our study site 

due to the potential for biogeochemical transformations in a sandy setting.  A primary 

tidal channel cuts through the sandy swash and meanders around a small sandy tidal flat 

which experiences semi-diurnal inundation by tides (Figure 3). The primary channel is 

influenced heavily by nearshore processes, which results in high sedimentation rates and 

a dynamic morphology (Hoffnagle, 2015). 

Singleton Swash drains the third largest watershed (613 hectares) of 15 swashes 

identified by Smith and Sanger (2015). Pastore (2018) calculated discharge out of 

Singleton Swash to be 4.52х105 m3 per ebb tide. In addition, the impervious cover 

(percentage) of land around Singleton Swash is 20.1% (Smith and Sanger, 2015). 

Sampling stations were selected for a high-resolution transect (50-m resolution) 

spanning from a relatively stable transition zone (Figure 3, indicated by star), through the 

swash zone. Auxiliary stations, e.g., in the mud-dominated marsh tidal creek segment and 

in a sandy tidal pool, were added as well to provide contrast against the sandy tidal creek 

transect (Figure 3). In addition, surface run-off (Figure 3) at the banks of the channel 

adjacent to a nearby property was also sampled when present. 
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Figure 3. Study site with approximate locations of primary channel and auxiliary stations (marsh 

tidal creek, sandy tidal pool, and run-off). Stations were spaced approximately 50 m apart 

between the yellow and red stars. A channel realignment took place on December 24th, 2018. 
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2.2 Field observations and sampling 

We chose to sample seasonally due to considerable variation in light and 

temperature during an annual cycle. Atmospheric data were collected from the national 

weather service to identify the ambient changes in abiotic factors and anomalies, if 

present (NWS, 2019). Water conditions (water temperature and salinity) in Long Bay, SC 

were obtained from the Long Bay Observation System at Apache Pier, SC, through the 

SECOORA data portal (LBOS, 2019). We expect that the dynamic conditions, and a 

shallow water column, cause changes in oxygen (O2), chlorophyll a (Chl a), and 

inorganic nutrients as the balance between photosynthesis and respirations shifts. After 

conducting preliminary sampling on December 12th, 2017 and August 15th, 2018, 

seasonal sampling began on August 31st, 2018. Subsequent sampling events occurred on 

November 17th, 2018, January 22nd, 2019 and April 14th, 2019. Sampling events consisted 

of field measurements and laboratory analyses. Five to ten sampling locations were 

selected roughly every 50 m spanning the distance from the beach swash zone to the 

point the (spatially stable) tidal creek enters the sand field, representing a high-resolution 

transect across the primary tidal channel.  

At every station, a YSI ProDSS meter (YSI Inc., Yellow Springs, Ohio) was used 

to record the station’s GPS location, water temperature (°C), salinity (PSU) and O2 (% 

saturation), while turbidity (NTU) was measured using a HACH 2000Q portable 

turbidimeter (Hach, Loveland, Colorado). Water-column and sedimentary samples were 

retrieved from the same locations. Water samples were filtered on site through 0.2-m 

nylon filters into 7-mL, pre-rinsed scintillation vials for inorganic nutrient analyses. 
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Additional water samples were collected in 125-mL HDPE bottles for filtering on GF/F 

filters in the lab for Chl a analysis. Surface sediment (0-10 cm) samples for laboratory 

analysis of grain-size distribution and permeability were collected using 60-mL cut-off 

syringes, and sedimentary (Sed) Chl a samples (0-5 cm) were collected using 10-mL cut-

off syringes and transferred to pre-weighed glass vials. Pore-water samples were 

retrieved using an MHE PushPoint sampler (MHE Products, East Tawas, Michigan) at 30 

cm below the sediment surface. All samples were immediately stored on ice in a cooler, 

transported to the lab within an hour, and stored in the freezer or processed immediately.  

2.3 Analytical methods 

Permeability was determined by the constant-head method (Klute and Dirksen, 

1986; Rocha et al., 2005). Grain size distribution was determined by wet sieving and 

mean grain size (mm, phi), median grain size (mm, phi), sorting (phi), and skewness 

(dimensionless) were determined by the statistical definitions in McManus (1988).  

Chl a was measured by fluorescence after extraction in acetone as described for 

GF/F filters in Arar and Collins (1999) and for sedimentary samples in Hannides et al. 

(2014). 

The methods used for nutrient analyses in this study have been modified to 

accommodate small sample volumes (1-1.2 ml) in order to minimize the volume of the 

sampled effective sediment sphere. A microvolume column was set up for the reduction 

of nitrate (NO3
-) to nitrite (NO2

-), according to the principles in Strickland and Parsons 

(1972), and nitrite was analyzed spectrophotometrically (Bendschneider and Robinson, 

1952), with limits of detection of 0.37 and 0.02 μmol L-1 for nitrate and nitrite 
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respectively. Ammonium (NH4
+) was analyzed by fluorescence according to Holmes et 

al. (1999), with a limit of detection of 0.17 μmol L-1. Phosphate (PO4
3-) was analyzed 

spectrophotometrically by the molybdenum blue complexation method with a limit of 

detection at 0.26 μmol L-1 (Murphy and Riley, 1962; Hansen and Koroleff, 1999). 

2.4 Conservative mixing analysis 

Linear conservative mixing models (Figure 2) were developed by fitting a linear 

regression model through the two salinity end-member (x-axis) vs. chemical 

concentration (y-axis) pairs using MS Excel in the primary tidal channel on each 

sampling event, yielding a model slope (mModel) and a model intercept (bModel). 

 Deviation from conservative mixing, C (otherwise known as the residual value), 

was quantified as follows: 

C = CMeas - CModel 2 

where C can be replaced by the formula or notation of the compound under investigation, 

CMeas is the measured concentration at non-end-member stations and CModel is the 

theoretical concentration predicted by the linear conservative mixing model, as follows: 

CModel = mModel  SalMeas + bModel 3 

where SalMeas is the measured salinity at a non-end-member station, m is the slope of the 

linear model and b is the intercept of the linear model.  

The resulting residual values for any given property on any given sampling event 

were analyzed statistically to evaluate source/sink behavior and similarities between 

seasons and properties to determine the overall behavior of various chemicals in 

Singleton Swash.  
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2.5 Statistical analysis 

Data were explored graphically and statistically using suitable methods (Sokal 

and Rholf, 1994). Property-property plots, including the salinity vs. concentration plots 

used in the conservative mixing analysis, were generated using averages (and standard 

deviations) of each property at each station. Deviations from conservative behavior for 

each property were evaluated by constructing Box and Whisker plots (MS Excel) of 

residual values throughout the swash for each property on each sampling event. These 

plots displayed the 25-75 % range or interquartile range (box), the 1.5interquartile range 

(whiskers), the median (line), and mean (indicated as “x”) along the transect. The 

assessment of non-conservative behavior for a measured property was determined by the 

position of the 25-75% interquartile range relative to zero. One-tailed ANOVA was used 

to determine if significant differences in the concentrations of O2, nutrients and Chl a 

existed between seasons as well as between the sedimentary and overlying water 

environments (significance level of 0.01). 
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3 RESULTS 

3.1 Meteorological and coastal oceanic conditions 

Meteorological and coastal oceanic data are shown to provide information on 

abiotic factors during the study (Figure 4). Atmospheric temperature and daylight 

duration show typical seasonal variation increasing during the summer and decreasing 

during the winter, while precipitation records document intense rainfall events, especially 

Hurricane Florence (September 2018). The effect of this event is noticeable in coastal 

ocean data collected at the nearby Apache Pier station of the Environmental Quality Lab 

of CCU. While sea surface temperature displays regular seasonal variation, salinity is 

significantly lower immediately after Hurricane Florence and remains below normal 

oceanic salinity for the remainder of the study period. 

3.2 Sedimentary geological and physical properties 

Sedimentary and physical properties across the study site are summarized in 

Table 1. Overall the sediment along the primary channel may be classified as moderately 

sorted, medium sand, with a symmetrical distribution. Sediment is highly permeable 

(>10-12 m2) and decreases towards the landward-most station (Figure 5).  
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Figure 4. Above: Atmospheric temperature and precipitation for North Myrtle Beach, the nearest 

National Weather Service station (NWS, 2019) and daylight duration estimated from sunrise and 

sunset times from the US Navy Observatory (USNO, 2019).  Below: Coastal oceanic data 

collected from the Apache Pier station (4 m depth) of the Environmental Quality Laboratory of 

CCU (SECOORA, 2019). Sampling event times are shown in black circles and the time of 

Hurricane Florence is shown by the white triangle. 
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Table 1. Sedimentary geological and physical properties (average  1 standard deviation). 

 Primary channel Marsh tidal creek Sandy tidal pool 

Mean grain size (phi, m) 1.870.36, 28262 2.5, 182 2.20.2, 22029 

Median grain size (phi, m) 1.870.37, 28260 2.6, 164 2.30.3, 21045 

Sorting    

1 0.720.12 0.680.34 0.760.03 

classification Moderately sorted Moderately well 

sorted 

Moderately sorted 

Skewness    

SK1 -0.040.12 -0.34 -0.130.19 

classification Symmetrical Very negatively 

skewed 

Negatively skewed 

Permeability (m2) 2.910-111.110-11 1.410-125.510-13 4.710-123.010-12 
Porosity 0.440.02 0.460.01 0.450.00 

 

 

 

Figure 5. Sediment permeability along the transect. Distance of 0 m indicates the beginning of the 

transects (landward-most station; Figure 3). 
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Figure 6. Salinity and temperature variation with distance along the transect on all sampling 

dates. Distance of 0 m indicates the beginning of the transects (landward-most station; Figure 3).  
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3.3 Swash primary channel 

Salinity and temperature variations with distance in the primary channel on all 

dates are shown in Figure 6.  

Biogeochemical data from the overlying water and sediment of the primary 

channel from the four main sampling events are shown as conservative mixing plots in 

Figure 7 and Figure 8, respectively, and as box plots in Figure 9. Statistically significant 

differences were detected between sampling events in all water-column properties during 

the study (p<1х10-5) and Sed Chl a (p=4х10-4), but no such differences were present in 

the remaining sedimentary properties (p=0.851, PW DIN; p=0.151, PW PO4
3-). 
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Figure 7. Conservative mixing plots of overlying water biogeochemical properties. Solid black 

lines indicate conservative mixing lines. Error bars indicate one standard deviation where 

available. 
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Figure 8. Conservative mixing plots of sedimentary biogeochemical properties. Solid black lines 

indicate conservative mixing lines. Error bars indicate one standard deviation where available.  
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Figure 9. Box plots of concentrations of O2 (overlying water only), Chl a, DIN and PO4
3- along 

the transect (pore-water nutrient data not available on 12/12/2017). Mean values are indicated by 

the x.  
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3.3.1 Non-conservative behavior 

Residuals calculated during the conservative mixing analysis are shown in Figure 

10, and source/sink designation for each property on each day is summarized in Table 2. 

 

Table 2. Source/sink behavior for measured overlying water (OW), pore-water (PW) and 

sedimentary (Sed) properties based on the position of the 25-75% interquartile range relative to 

zero. Dash indicates mixed behavior along the complete transect.  

 

Date 8/31/2018 11/17/2018 1/22/2019 4/14/2019 

% O2 Source - - Sink 

OW Chl a Source Sink - - 

OW DIN - Source Source Sink 

OW PO4
3- - Source Sink Source 

Sed Chl a Source Sink Source Sink 

PW DIN - Source Source Source 

PW PO4
3- Sink Source Source Source 
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Figure 10. Residuals for O2 (ΔO2, overlying water only), Chl a (ΔChl a), DIN (ΔDIN) and 

phosphate (ΔPO4
3-) in the primary swash channel on all main sampling dates. Positive residuals 

indicate net source, while negative residuals indicate a net sink. 
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3.3.2 Sediment-water column comparison 

Sedimentary vs. overlying water concentrations of Chl a, DIN, and PO4
3- in the 

primary swash channel on the main sampling dates are shown in Figure 11. Sedimentary 

concentrations are higher than overlying water concentrations (p<0.01) on all occasions 

with the exception of inorganic nutrients on 11/17/2018 (p=0.056, DIN; p=0.140, PO4
3-) 

and DIN on 4/14/2019 (p=0.024). 

The relationship between Sed Chl a concentrations and overlying-water O2 

saturation, DIN and PO4
3- concentrations at each station on the main sampling dates are 

shown in Figure 12. 
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Figure 11. Sedimentary (pore-water where “PW” is indicated) vs. overlying water (OW) 

concentrations for Chl a, DIN and PO4
3- for all stations along the transect on the main sampling 

dates. Dashed lines are ratios shown for ease of comparison.  
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Figure 12. The left column shows Sed Chl a vs overlying water (OW) % O2 saturation, DIN and 

PO4
3- at all sampling stations along the transect on the four main sampling dates and one 

preliminary sampling date (12/12/2017). The right column shows the average value for each 

sampling date along the transect.  

 Seasonal Averages 
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3.4 Comparisons with auxiliary stations 

Auxiliary stations such as the marsh tidal channel and a sandy tidal pool flushed 

at high tide represent a contrast to the primary swash channel. Sedimentary physical and 

geological properties at the three stations and sampling events are compared in Figure 13. 

In addition to these three sites, the occasional occurrence of considerable surface 

water run-off from the adjacent golf course into the primary swash channel, accompanied 

by substantial macroalgal growth on hard substrates on the banks (Figure 14) , during the 

January and April, 2019, sampling events warranted study, and therefore was included as 

an auxiliary station. A comparison of biogeochemical properties in both overlying water 

and sediment across all four stations is shown in Figure 15. 

 

 

Figure 13. Sedimentary geological and physical properties (mean  1 standard deviation) of the 

primary swash channel, the sandy tidal pool and the marsh tidal channel across all sampling 

events.  
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Figure 14. Segment of primary channel transect, adjacent to private property lawns behind metal 

wall (top), characterized by surface run-off (bottom) in January and April, 2019 (Photos courtesy 

of A. Hannides, April 14, 2019). 
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Figure 15. Mean ( 1 standard deviation) concentrations of O2 (overlying water only), Chl a, DIN 

and PO4
3- in the primary swash channel, the sandy tidal pool and the marsh tidal channel across 

all sampling events. Also shown are values for surface run-off in the overlying water plots.   
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4 DISCUSSION 

4.1 Sedimentary environment and physical exchange 

The primary channel of Singleton Swash is composed of highly permeable, 

medium sand (Figure 5). In contrast, sediment in the sandy tidal pool and marsh tidal 

creek consists of finer sand than the primary channel and, consequently, permeabilities 

that are lower by 6 and 20 times, respectively, due to larger fractions of fine-grained 

sediments (grain diameter < 63 m) than primary channel sand (Figure 13).  

While the direct exchange of matter across this highly permeable SWI was not 

measured, it is likely this exchange occurs at a greater rate along the transect than in less 

permeable environments (marsh tidal creek). Visually observed fast current speeds of 

overlying water combined with a highly permeable sedimentary column, likely result in 

exchange of particulate and dissolved materials across the SWI.  

The rapid water currents and uneven bathymetry that were observed along the 

transect suggest the overlying water mixes rapidly in the primary channel via turbulent 

forces (Berg et al., 2003). Increased tidal exchange by channel realignment and rapid 

mixing reflect small variations in salinity and temperature within the primary swash 

channel, with the ocean end-member being more distinct than the rest of the swash 

samples (Figure 6). The uniformity in temperature and salinity is consistent with a water 

mass accumulating within the marsh tidal creek and emptying out during low tide 

(Pastore, 2018).  
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The lack of a gradual freshwater-seawater transition in the primary channel, as is 

typical of large estuaries, is accompanied by mid-transect salinity minima, e.g., on 

August, 2018, and April, 2019 (Figure 6). This may be the result of surface freshwater 

inputs, sampled and analyzed on January and April, 2019 (Figure 15), or possible 

subsurface run-off through the highly permeable sediments.  

4.2 Biogeochemistry of the primary channel 

4.2.1 Spatial and temporal patterns 

The primary channel exhibits biogeochemical conditions that are expected of 

swashes in the Grand Strand region with overlying water DIN, PO4
3- and Chl a 

concentrations similar to those in discharge waters of Withers Swash (Smith and Sanger 

2015). High nutrient concentrations in November, 2018, coincide with very low salinities 

in the swash (Figure 6) and the coastal ocean (Figure 4), a probable consequence of 

continued discharge of freshwater accumulated in the upland watersheds during 

Hurricane Florence. 

Sedimentary concentrations of DIN, PO4
3- and Chl a are higher than overlying 

water values on most instances during the study period (Figure 11), consistent with the 

role of coastal sediments as a major site of organic matter degradation (e.g., Burdige, 

2006). The nutrient concentration difference between sediment and overlying water 

suggests a flux of nutrients towards the SWI. High Sed Chl a concentrations are 

explained by the “benthic nutrient filter” effect, i.e., sediment surface microphytobenthos 
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intercept sedimentary nutrients before they reach the overlying water (Anderson et al., 

2014). 

With the exception of sedimentary DIN, sedimentary and overlying water 

biogeochemical properties vary with the seasons (Figure 9), as predicted by shifts in 

balance between photosynthesis and respiration driven by light and temperature 

fluctuations (Figure 4). Based on ongoing time-series monitoring of Long Bay beaches 

(Hannides et al., in prep.), sandy sediments experience annual minimum Chl a 

concentrations in October-November, a major maximum period in June-August and a 

minor one (“spring bloom”) in February-March. Accordingly, Chl a and O2 are elevated 

and nutrient concentrations suppressed in August, 2018, and January, 2019, with the 

inverse observed in December, 2017, and November, 2018. 

4.2.2 Non-conservative behavior 

The results of the conservative mixing analysis indicate that  monitored properties 

exhibit non-conservative behavior for most of the study period (Figure 10). Pore-water 

nutrients exhibit source behavior in all seasons except August (a net balance between 

source and sink), a finding consistent with a role of sandy sediments as a biofilter, 

whereby overlying water organic matter is filtered and respired to generate inorganic 

nutrients (Boudreau et al., 2001). 

The fate of the generated inorganic nutrients is seasonally dependent, as this 

study’s conservative mixing analysis reflects these general patterns (Table 2, Figure 10). 

We assume that land-derived organic matter is filtered by the sandy terminus of the 

swash, and is respired by sedimentary microbiota. Turbulent mixing will transport these 
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nutrients to the sediment surface where they are intercepted by the benthic nutrient filter. 

We also assume that any land-derived dissolved nutrients in overlying water will also be 

taken up primarily by benthic photosynthesizers since Sed Chl a is much more 

concentrated than overlying-water Chl a (Figure 11). The swash is a source for O2 and 

both overlying and Sed Chl a during the peak- Chl a period in this region (August), while 

in the low- Chl a period (November/December) it is a sink for Chl a and a source for 

nutrients. By January, source-sink behavior already reverts to conditions representative of 

higher Chl a, i.e., primary productivity. 

4.3 Human activities and their effects 

4.3.1 Run-off from the surrounding area 

The patterns described in the previous section can be explained by well-

established understanding of seasonal variations and the interaction between overlying 

water and highly permeable sediment. The data from April, 2019, however, are 

inconsistent with this pattern. Overlying water is undersaturated with respect to O2 and 

high in nutrients, compared to January, 2019. However, conservative mixing analysis 

indicates a sink for O2, overlying water DIN and Sed Chl a and a source for overlying 

water PO4
3- (4/14/2019, Figure 7 and Figure 8).  

An explanation for this exception is input of freshwater from surface run-off 

flowing into the middle of the primary channel transect from adjacent lawns at relatively 

high rates. We observed, sampled and analyzed surface run-off in both January and April, 

2019, and we note, by observation, that both flow rate and occurrence of point flows were 
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much higher in April and it coincided with substantial macroalgal overgrowth on hard 

substrate on the banks of the primary channel (Figure 14). Respiration of this overgrowth 

would result in O2 draw-down and the occurrence of denitrification that would selectively 

remove nitrate but not PO4
3- from the system, thus explaining both the patterns in overall 

concentrations and sink-source behavior. 

Seasonal changes in human practices, especially daily irrigation and fertilizer 

application, may exacerbate nutrient loading to the coastal zone and stimulate eutrophic 

conditions characterized by excess primary production and O2 draw-down (Sanger et al., 

2012; Troup et al., 2017). 

4.3.2 Channel management 

Channel realignment is a regular practice at Singleton Swash (USACE and 

DHEC, 2014). One such realignment took place during our study in December, 2018. 

The result was a reduction of the total length of the primary channel by approximately 30 

%. While we sampled on a well-defined spatial transect before (November) and after 

(January), seasonally-driven natural and anthropogenic process changes over this period 

prevent us from demonstrating the immediate impacts of this realignment. In principle, 

the shortening of the distance over which overlying water solutes can interact with the 

underlying highly permeable sand and be modified may result in higher concentrations of 

nutrients at the ocean-most stations of our transect. A follow-up study during which the 

swash is monitored shortly before and after realignment should test for the impacts of the 

manipulation of the primary channel length on nutrient discharges to the coastal ocean. 
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Construction of a concrete culvert would change one critical aspect of the primary 

channel: the surface area of the underlying substrate. Sediment provides a much higher 

surface area per unit volume (or per meter-distance of a channel) than an impervious 

surface. Biofilms (and perhaps macroalgal mats) will inevitably form on the impervious 

surface and transform matter as it passes over them. Given our findings that show 

significant reservoirs of nutrients in sand, in the case of absence of the sandy substrate, 

those nutrients would otherwise have to be stored in hard-substrate epibiota or be 

exported to either side of the impervious culvert. Consideration must be given to the 

design of such a culvert and its potential impacts on the exchange of dissolved 

constituents between marsh and coastal ocean.  
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5 CONCLUSIONS 

This transect study of the shoreline segment of Singleton Swash documents a 

highly permeable primary channel whose biogeochemistry responds with the seasons, 

with evidence of low primary productivity in November-December and higher primary 

productivity in August. Conservative mixing analysis indicates that the channel’s sandy 

sediments act as a biofilter, respiring organic matter and generating inorganic nutrients 

that, outside the low primary productivity period, are exploited by benthic 

photosynthesizers. 

Detection of a gradual freshwater-seawater transition along the transect was 

complicated by freshwater inputs as surface run-off from surrounding properties in 

January and April, 2019. These inputs were substantial on the latter date and high in 

nutrients and are the most likely reason for macroalgal overgrowth on hard substrate. 

Replacement of the sandy bottom of the channel with an impervious culvert may require 

epibiota such as macroalgae to remove excess nutrients, otherwise these nutrients will be 

exported to the coastal ocean or the marsh. The presence of a highly permeable sand 

column may currently be serving as an effective remediation strategy for these inputs and 

deserves further study. 
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