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Abstract 

 Juvenile sandbar sharks (Carcharhinus plumbeus) have been caught in salinities ranging 

from 7 – 40. In Winyah Bay, a partially mixed estuary in Northeast SC, juvenile sandbar sharks 

tidally alternate between higher tides in middle bay and lower tides in lower bay. To assess 

salinity preference and duration in eight acoustically-tagged juvenile sandbar sharks in different 

salinities, acoustic receivers with salinity loggers were placed throughout Winyah Bay. Juvenile 

sandbar sharks were caught in salinities from 17.2 to 36.1 and acoustic detections were recorded 

from 11.5 to 24.7 by salinity loggers in middle bay. Smaller juvenile sandbar sharks used lower 

salinities, presumably to decrease osmoregulatory costs and predation, and used tidal currents to 

move throughout the bay, which also decreased energy expenditure. Acoustically tagged sharks 

spent most of their time in middle Winyah Bay at high tide or tidal phases immediately before or 

after high tide, whereas when these sharks were present at the mouth of the bay, they spent more 

time at tides related to low tide. To test whether duration spent in lower salinities was sufficient 

to change plasma osmolality and osmolyte concentrations, we measured sodium, chloride, urea, 

TMAO, and potassium concentrations and total osmolality in plasma of juvenile sandbar sharks 

caught on longlines set at either flood or ebb tide from May-August, 2018. All variables differed 

significantly (p < 0.05; ANOVA) between salinity groups (17 – 21.9; n = 14, 22 – 26.9; n = 9, 27 

– 31.9; n = 9, and > 32; n = 11). Sodium and chloride concentrations in the lowest salinity group 

(LSG) were 243.15 ± 2.82 and 241.91 ± 2.86 mM, respectively, and increased to 279.84 ± 2.06 

and 280.73 ± 1.72 mM, in the highest salinity group (HSG). Between the LSG and the HSG, urea 

increased from 269.34 ± 5.97 mM to 352.25 ± 5.95 mM, and TMAO increased from 49.69 ± 

2.59 mM to 81.15 ± 3.92 mM. Potassium increased from 4.35 ± 0.21 mM (LSG) to 5.09 ± 0.10 

mM (HSG). Total osmolality in the HSG was 998.73 ± 12.61 mOsm/kg and 822.24 ± 11.62 

mOsm/kg in the LSG. Post-hoc Tukey tests of all variables revealed that the HSG was 
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significantly different than the other three salinity groupings in all osmotic components except 

potassium, whose contribution to osmoregulation is minimal. This study further supports that 

juvenile sandbar sharks seek out brackish salinities and that salinity becomes a smaller factor in 

movement as they grow. It is the first to suggest that juvenile sandbar sharks can partially osmo- 

and ionoconform in a similar manner to juvenile bull sharks.  
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Introduction 

Sandbar shark habitat  

 Sandbar sharks (Carcharhinus plumbeus) are highly migratory along global temperate and 

subtropical coastlines (Bigelow and Schroeder, 1953; Springer, 1960; Kohler et al., 1998). On 

the US East Coast, adult female sandbar sharks use near-shore and estuarine environments as 

primary nurseries, where they give birth and offspring spend their first year of life, and 

secondary nurseries, where the offspring return as juveniles (Bigelow and Schroeder, 1953; 

Springer, 1960; Castro, 1993; Merson and Pratt, 2001; Abel et al., 2007; Grubbs et al., 2007; 

Grubbs and Musick, 2007; McCandless et al., 2007; Ulrich et al., 2007; Gary, 2009; Bangley, 

2016). These nursery habitats are critical because they provide shelter from predators and have 

abundant food sources (Castro, 1993). Nurseries are particularly important for sandbar sharks as 

their populations are still recovering from overfishing (Grubbs and Musick, 2007; SEDAR, 

2011). As sharks reach adulthood, they leave nurseries and move to nearshore communities, 

whereas the juveniles remain in estuarine nurseries. Protecting nurseries and understanding how 

they are used by both these sharks and their prey species are central for the stock to rebuild. 

Female adult sandbar sharks move into East Coast estuaries in early summer to birth their 

young (Castro, 1993). The two main US East Coast nurseries for sandbar sharks are Delaware 

Bay and Chesapeake Bay (Carlson, 1998; Grubbs and Musick, 2007). Estuarine and nearshore 

areas of South Carolina, notably Bulls Bay and Winyah Bay, are also potential primary nurseries 

for sandbar sharks, with juveniles being found more in estuarine than nearshore environments 

(Abel et al., 2007; Ulrich et al., 2007; Collatos, 2018). After pups are born, the female adult 

sandbar sharks leave the nursery (Castro, 1993). During early summer adult male sandbar sharks 

reside offshore, but are occasionally seen in more coastal environments during late fall. After the 
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female adults leave the nursery, they typically mate the following summer, and will give birth 

the summer after that (Castro, 1993). Populations of adult sandbar sharks are not well known in 

estuaries; however, gillnet and longline methods may not be effective in targeting larger, adult 

sandbar sharks and thus they may be underrepresented in surveys (Thorpe et al., 2004; Ulrich et 

al., 2007).  

Within their primary and secondary nursery estuarine habitats, juvenile sandbar sharks 

have the highest likelihood of being present near the mouth of the estuary more so than in the 

low salinity, higher reaches (Abel et al., 2007; Grubbs et al., 2007; Grubbs and Musick, 2007; 

Collatos, 2018), primarily in shallow and nearshore environments in the estuary (Medved and 

Marshall, 1983; Castro, 1993; Wetherbee and Rechisky, 2000; Grubbs and Musick, 2007; 

McCandless et al., 2007; Ulrich et al., 2007; Collatos, 2018). Even though juvenile sandbar 

sharks reside more in the lower reaches of estuaries, they move within these estuaries, primarily 

using tidal currents, presumably to save energy and position themselves in locations better suited 

for foraging and protection (Medved and Marshall, 1983; Wetherbee and Rechisky, 2000).  

Juvenile sandbar sharks inhabiting estuaries along the US East Coast leave these estuaries 

from September through November and migrate (Springer, 1960; Grubbs et al., 2007; Grubbs 

and Musick, 2007; McCandless et al., 2007; Conrath and Musick, 2008; Bangley, 2016; 

Collatos, 2018). When temperature in their over summering habitats drops below 18-20°C in late 

fall, juvenile sandbar sharks occupying NE US estuaries such as Chesapeake and Delaware Bay 

move as far south as the Gulf of Mexico, but most overwinter in North Carolina, in places like 

Raleigh Bay and Cape Hatteras (Castro, 1993; Merson and Pratt, 2001; Grubbs et al., 2007; 

McCandless et al., 2007; Bangley, 2016; Collatos, 2018). Recently, juvenile sandbar sharks 
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inhabiting Winyah Bay, along the NE coast of South Carolina, were found to migrate south and 

not to nearer North Carolina water in September through November (Collatos, 2018).  

Evidence for migration of juvenile sandbar sharks until recently has depended heavily on 

tag-recapture studies. These studies rely on voluntary reporting of recaptures by both commercial 

and recreational fishers. However, these studies have low rates of recapture, ranging from 1.2 – 

6.4% (Kohler et al., 1998; Merson and Pratt, 2001; McCandless et al., 2007; Grubbs et al., 2007; 

Collatos, 2018) and thus require long-term monitoring involving large numbers of sharks. In the 

last thirty years, acoustic telemetry has provided a more robust method of understanding 

movements of sharks without relying on recaptures (Conrath and Musick, 2008; Bangley, 2016; 

Collatos, 2018).  

Salinity Ranges  

 Most elasmobranchs are restricted to high salinity environments, with notable exceptions 

that include the bull shark (Carcharhinus leucas), potamotrygonid rays, some dasyatid rays, and 

sawfish (Compagno, 1995; Martin, 2005). Only 10% of elasmobranch species reside in estuaries, 

only 2% are euryhaline, and 1% are stenohaline in freshwater (Martin, 2005; Hammerschlag, 

2006). In the family Carcharhinidae, only two species are known to tolerate low salinities for 

extended periods, the bull shark and the Ganges River shark (Glyphis gangeticus) the latter of 

which is considered extinct (Martin, 2005). Sandbar sharks are listed as a “marginal” species, 

which means that they are, “common in inshore marine habitats” and “marginal in brackish or 

freshwater” (Martin, 2005). Their salinity ranges (see below) along the US East Coast support 

the occupancy of brackish environments.  

 Several studies along the Eastern US have reported that juvenile sandbar sharks inhabit 

brackish environments (Carlson, 1998; Merson and Pratt, 2001; Abel et al., 2007; Grubbs and 
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Musick, 2007; McCandless et al., 2007; Ulrich et al., 2007; Gary, 2009; Bangley et al., 2018; 

Collatos, 2018) and the species has been found in salinities as low as 7 (Gary, 2009). Along 

Florida’s northern Gulf of Mexico coastline, neonate and juvenile sandbar sharks were caught in 

salinities from 13 – 36; however, there was no significant relationship between salinity and shark 

abundance (Carlson, 1998).  In Delaware Bay, juvenile sandbar sharks were caught in salinities 

ranging from 22.8 – 30.3, and salinity also did not correlate significantly with abundance 

(Merson and Pratt, 2001). Also in Delaware Bay, McCandless et al. (2007) caught juvenile 

sandbar sharks in a salinity range of 18.3 – 31. In Chesapeake Bay, the greatest number of 

juvenile sandbar sharks were found in salinities higher than 20.5, but they were caught in 

salinities as low as 15.4 (Grubbs and Musick, 2007). Unlike previous studies (Carlson, 1998; 

Merson and Pratt, 2001; McCandless et al., 2007), Grubbs and Musick (2007) found that higher 

salinity was significantly correlated with higher catch per unit effort (CPUE). 

 In North Carolina, juvenile sandbar sharks were found in salinities between 31 and 37 

from Long Beach south to Shallotte Inlet (Thorpe, 2004), and between 18 and 32.3 in Pamlico 

Sound (Bangley et al., 2018). In SE South Carolina estuaries and nearshore environments from 

Bulls Bay south to Port Royal Sound, Ulrich et al. (2007), in a study that did not report salinity 

data by life stage, caught mostly juvenile and some adult sandbar sharks in salinities from 13 to 

37. In Winyah Bay, South Carolina, juvenile and adult sandbar sharks were found in salinities 

ranging from 7 – 40, with means of approximately 28 (Abel et al., 2007; Gary, 2009; Collatos, 

2018). Abel et al. (2007) found that salinity was significantly correlated with CPUE in this 

species in Winyah Bay. Gary (2009) also found that top and bottom salinity were significantly 

correlated with CPUE. Although Gary’s finding was based on all sharks caught in Winyah Bay, 

49% of the catch was sandbar sharks. Collatos (2018) did not find a significant correlation 
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between the CPUE for juvenile sandbar sharks and salinity, but did find a positive significant 

correlation between CPUE and high tide.  

Osmoregulation in Elasmobranchs 

In saltwater, elasmobranchs (sharks, skates, and rays) maintain extracellular osmolality at 

around the same concentration or slightly higher than the surrounding environment by retaining 

urea (Pang et al., 1977). For bull sharks, the ability to be euryhaline depends heavily on the 

organism lowering their urea concentration in lower salinities (Thorson et al., 1983). Urea is 

toxic, but when paired with the osmolyte trimethylamine oxide (TMAO), its protein-disrupting 

effects are counteracted (Yancey and Somero, 1979). By being isosmotic, or slightly 

hyperosmotic, with seawater, energy is conserved because there is no need to expend energy 

drinking to help decrease dehydration (Mandrup-Poulsen, 1981). As sodium and chloride salts 

from the environment move into the animal in accordance with Fick’s Laws of Diffusion, they 

are removed by the energy-requiring rectal gland and are excreted from the body through the 

cloaca (Pang et al., 1977).   

The only true freshwater elasmobranchs are the family Potamotrygonidae, about 37 

species of freshwater stingrays (Fricke et al., 2019). This family has evolved to retain virtually 

no urea, since the osmotic pressure of freshwater is much lower than seawater (Appendix Table 

2). In a lab experiment, it was found that potamotrygonids cannot survive in water with a salinity 

greater than 3 (Wood et al., 2002). In addition, these rays have smaller rectal glands because they 

need to conserve, and not excrete, salts (Thorson et al., 1978). 

Among euryhaline elasmobranchs, the best-studied is the bull shark. Populations of bull 

sharks are found in freshwater systems, including Lake Nicaragua and Rio San Juan in 

Nicaragua (Urist, 1962a; Thorson et al., 1973), Lake Bayano in Panama (Montoya and Thorson, 
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1982), and Wenlock and Brisbane Rivers in Queensland, Australia (Pillans and Franklin, 2004; 

Pillans et al., 2005; Reilly et al., 2011).  In brackish waters, bull sharks decrease their total 

osmolality by lowering their sodium, chloride, urea, and TMAO concentrations (Appendix Table 

1), but do not completely iono- and osmoconform to their environment. Bull sharks that spend 

more time in freshwater than seawater were shown to have fewer tubules for salt excretion in 

their rectal glands, consistent with there being a decreased demand for salt excretion (Pillans and 

Franklin, 2004). In these environments osmolyte components and total osmolality decrease 

(Appendix Table 1) and sometimes become negligible, as is the case in Lake Nicaragua and the 

Rio San Juan (Urist and Van de Putte, 1967). 

In the estuarine environments of the Caloosahatchee River, San Carlos Bay, and Pine 

Island Sound in SW Florida, juvenile bull sharks segregate by size along a salinity gradient, with 

smaller sharks occurring in lower salinities and adults occurring in higher salinities 

(Simpfendorfer et al., 2005; Heupel and Simpfendorfer, 2008). For juveniles in lower salinities, 

the likelihood of predation decreases, since many larger sharks, their primary predators, are 

stenohaline and thus do not inhabit lower salinities (Pillans and Franklin, 2004; Pillans et al., 

2005). In studies on juvenile bull sharks, osmolyte concentrations and total osmolality decreased 

in lower salinities; urea had the largest decrease (Urist, 1962b; Urist and Van de Putte, 1967; 

Thorson et al., 1973; Manire et al., 2001; Pillans and Franklin, 2004; Pillans et al., 2005; Pillans 

et al., 2008; Reilly et al., 2011). Moreover, defending intracellular osmotic conditions found in 

bull sharks in full-strength seawater is energetically costly for smaller bull sharks, as they have a 

higher surface area to volume ratio. In lower salinities, these juveniles avoid the additional 

energetic costs of osmoregulation and these energy “savings” may be allocated to growth 

(Simpfendorfer et al., 2005; Heupel and Simpfendorfer, 2008). 
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Despite the evidence of sandbar sharks in lower salinities, no studies of their blood 

chemistry and osmolality have been conducted. Bull sharks have been caught in the same areas 

as sandbar sharks in nearshore and estuarine communities throughout North and South Carolina 

(Castro, 1993; Abel et al., 2007; Ulrich et al., 2007; Gary 2009; Bangley et al., 2018; Collatos, 

2018). None of these studies has documented how long juvenile sandbar and bull sharks spend in 

lower salinities. Since juvenile sandbar sharks reside in similar habitats and have the similar 

surface area to volume constraints and natural predation as juvenile bull sharks, it is pertinent to 

know whether the plasma osmolyte concentration and total osmolality of juvenile sandbar sharks 

exhibit some degree of iono- and osmoconformity in lower salinities, like juvenile bull sharks 

(Castro, 1993; Abel et al., 2007; Ulrich et al., 2007; Gary 2009; Bangley et al., 2018; Collatos, 

2018).  

Objectives 

The specific objectives of this study were to assess the duration that juvenile sandbar 

sharks spend in lower salinities and to determine whether osmolyte concentrations and total 

osmolality change in lower salinities. To determine when and for how long juvenile sandbar 

sharks were using lower salinities, passive acoustic telemetry and salinity loggers at acoustic 

receiver stations were used. To examine osmolyte concentrations and total osmolality, these 

values were measured from blood plasma in juvenile sandbar sharks.  

Materials and Methods 

The Study Site: Winyah Bay, SC 

Winyah Bay has an area of about 65 km2 (Abel et al., 2007). The bay is a partially-mixed 

estuary during periods of average river flow and rainfall, but behaves as a salt wedge when river 

flow into the bay increases during higher than normal rainfall in the watershed. Saltwater input 
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occurs during high tide when salty water from the Atlantic Ocean floods into the bay 

(Patchineelam et al., 2004). Riverine freshwater input into the estuary originates from the Black, 

Waccamaw, Pee Dee, and Sampit Rivers (Abel et al., 2007). Rainfall in late summer is typically 

higher than earlier in the summer. Thus, mean Winyah Bay salinity is higher in early summer 

than late summer. Salinity difference between surface and bottom waters of Winyah Bay mostly 

varies between 0 and 15; however, differences can be > 30 (Abel et al., 2007).  

Experimental Protocol 

Longlines targeting juvenile sandbar sharks for acoustic telemetry and blood plasma 

analysis were set at three reference stations in Winyah Bay using boats from the CCU fleet (R/V 

Coastal Research and R/V Brooks McIntyre). These sampling stations included Harvest Moon in 

upper Middle Bay (~ 33.29 N, ~ 79.25 W), “Sandbar City (SBC)” in lower Middle Bay (~ 

33.25 N, ~ 79.23 W), and Mother Norton Shoals (MNS) in Lower Bay (~ 33.21 N, ~ 79.19 

W). These sites were selected because of historically larger catches of juvenile sandbar shark in 

previous studies (Abel et al., 2007; Gary, 2009; Collatos, 2018) and from captain input (Jayroe, 

W, pers comm).  

At each station, two 50-hook bottom longlines were deployed, one with 16/0-hook 

gangions to target larger juvenile sandbar sharks and the other with 12/0-hook gangions for 

smaller juveniles. Gangions were one meter long with a tuna clip attached to monofilament, 

swivel, leader wire, and a hook, as described by Abel et al., 2007. Longlines soaked for 45 - 60 

minutes, followed by a reset at a different location if weather permitted. Boston mackerel 

(Scomber scombrus) was used as bait. Longlines were set within one hour preceding either high 

or low tide based on the NOAA tide prediction for the Georgetown Lighthouse. In addition, 
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juvenile sandbar sharks caught by other ongoing CCU Shark Project studies using the same 

collection techniques were utilized for this study. 

Salinity monitoring 

Before each longline was set, a YSI Pro 2030 was used to measure bottom and top 

salinity, temperature, and dissolved oxygen. These abiotic measurements were also measured 

after the longline was set and before and after the longline was hauled. The four bottom salinities 

were averaged to account for variation during the time that the longline was soaking. 

Bottom salinity was continuously monitored using U-24 HOBO conductivity loggers on 

the MNS and both SBC acoustic receivers and the NERRS (National Estuarine Research Reserve 

System) acoustic receiver utilized the bottom salinity logger already present on the station.  

Shark processing 

 Juvenile sandbar sharks caught on longlines were brought onboard and precaudal length 

(PCL), fork length (FL), and total length (TL) were measured. Either a Casey tag (for sharks > 

110 cm TL) or a roto tag (for sharks < 110 cm TL) was inserted into the dorsal side under the 

first dorsal fin of the animal or in the first dorsal fin, respectively. Sandbar sharks were 

considered juveniles if their PCL was < 136 cm (Springer, 1960; Sminkey and Musick, 1995). 

 Tonic immobility was induced in each shark, after which 3 mL of blood was drawn from 

the hemal canal using an 18-gauge needle. Additionally, eight juvenile sandbar sharks (> 110 cm 

total length and PCL < 136 cm) had acoustic tags surgically implanted into their body cavity 

after blood was taken. These lengths were selected for acoustic implantation because sharks were 

large enough that the threat of predation had decreased, but the sharks were still within the 

juvenile size range (Springer, 1960; Sminkey and Musick, 1995). 
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Acoustic telemetry 

The FACT (Florida Atlantic Coast Telemetry) Network and the SCDNR (South Carolina 

Department of Natural Resources) were used to obtain detections along the US East Coast. Four 

Vemco (VR2W) acoustic receivers were also deployed around Winyah Bay fishing sites in 

addition to collecting detections from the SCDNR’s acoustic array deployed in and immediately 

outside of Winyah Bay (Fig. 1). The receivers deployed by the CCU Shark Project were 

deployed on the NERRS Station (33.30945 N, 79.28882 W), on a cement mount on the 

western side of SBC (33.25613 N, 79.23322 W), on a piling on the eastern side of SBC 

(33.25788 N, 79.21435 W), and on a piling just inside the mouth of the bay at MNS 

(33.20148 N, 79.18693 W).  The receiver on the western side of “Sandbar City” was placed in 

a concrete receiver mount provided by SCDNR. The other three CCU Shark Project receivers 

were attached to pilings using industrial zip ties, chain, and a weight. Every two months, data 

were downloaded and batteries were changed from the four CCU Shark Research Project 

receivers. Acoustic data were sent from SCDNR and the FACT Network as these organizations 

downloaded data from their receivers. 

To get an estimate of the range of acoustic tags in Winyah Bay, range testing was 

conducted using a specialized range testing acoustic tag from Vemco. The stated maximum 

range of the V16-4H tags is 400 m, so the tag was deployed in 100 m increments for ten-minute 

time periods to determine the efficiency at different distances. The efficiency of the tags in this 

environment was calculated by dividing the number of recorded detections by the number of 

expected detections (Welsh et al., 2012).  
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Blood processing  

Three mL of blood were taken from the hemal canal of juvenile sandbar sharks and was 

placed into two 1.5 mL Eppendorf microcentrifuge tubes, and stored on ice in a cooler. At the 

dock, blood was centrifuged for five minutes at 10000 rpm to separate red blood cells from 

plasma. Plasma was removed and was frozen (0°C) until analysis. Samples were overnighted on 

dry ice to Dr. Paul Yancey’s lab at Whitman College (Walla Walla, WA) where sodium, 

chloride, TMAO, urea, and potassium concentrations, and total osmolality were measured. 

Sodium concentration was measured with a sodium electrode made by Hanna Instruments 

(Woonsocket, RI) and chloride and potassium concentrations were measured with ion specific 

electrodes made by Pasco Scientific (Roseville, CA). Urea concentration was measured with a 

PerkinElmer 200 pump, Sugarpak-1 column, and a BioRad refractive index detector. TMAO 

concentration was measured using a Beckman spectrophotometer, and total osmolality was 

measured using a Wescor 550, a vapor pressure osmometer. Forty-three plasma samples were 

analyzed.   

Statistics and Analysis  

Normal distribution was tested by conducting a Shapiro-Wilkes test (Appendix Shapiro-

Wilkes Normality Tests). Precaudal lengths of all juvenile sandbar sharks were log transformed 

because the raw values were not normal, and the resulting data set was determined to be normal 

by a Shapiro-Wilkes test. Salinity was split up into four salinity groups based on the lowest 

salinity in which a juvenile sandbar shark was caught on a longline (1: 17 - 21.9; 2: 22 – 26.9; 3: 

27 – 31.9; 4: > 32). To compare blood osmolyte and total osmolality values and precaudal length 

between the varying salinity conditions, an ANOVAs were conducted in R. Post-hoc Tukey tests 

were conducted in R to reveal significant differences between the salinity groups. Individual 
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detections were compressed into detection events, which were defined as detections within 20 

minutes of each other at the same receiver. Tide times were correlated to detection events, and 

salinity measurements from the loggers were correlated to individual detections. To determine 

whether ebb and flood tides were associated more with high or low tide, they were split into high 

and low ebb and high and low flood. Detections events were categorized as high ebb if the tide 

was outgoing, ebb tide, and the event occurred within three hours of high tide, and were 

categorized as low ebb if the tide was outgoing, ebb tide, and the event occurred within three 

hours of low tide. The same divisions were used for high and low flood; however, the tide was 

incoming, flood tide, instead of outgoing, ebb tide. If the detections fell between within three 

hours of high and low tide, the time was either labeled as flood if the tide was incoming or ebb if 

the tide was outgoing. A visual analysis of time spent at each tidal stage by receiver location was 

conducted through QGIS. 

Results 

Length vs. Salinity 

 PCL increased with salinity for both the juvenile sandbar sharks utilized in the plasma 

study and of all juvenile sandbar sharks caught in this study (Tables 1 and 2; Fig. 2). The subset 

of juvenile sandbar sharks used for the plasma study was representative of all juvenile sandbar 

sharks caught during the study period. PCL had significant differences between salinity groups 

for all juvenile sandbar sharks caught in this study (Table 3; All Juveniles: p < 0.001). Post-hoc 

Tukey tests revealed that there were significant differences in PCL of all juveniles caught 

between the LSG and HSG, the second salinity group (SSG) and the HSG, and the TSG and 

HSG (Table 4; All Juveniles: HSG x LSG, p < 0.001; HSG x SSG, p < 0.001; HSG x TSG, p < 

0.05).  
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Winyah Bay Acoustic Telemetry 

 Out of the three juvenile sandbar sharks tagged in August, 2018, only transmitter #9042 

had detections for more than three days. This juvenile sandbar shark had a total of 2032 

detections totaling 3891 minutes from August 10, 2018 to September 24, 2018 in Winyah Bay, 

SC and utilized eight of the thirteen receivers in and immediately outside of Winyah Bay (Table 

5). Most of the detection events within Winyah Bay occurred within three hours before or after 

high tide, but detection events related to low tide became more prominent the more seaward the 

receiver (Tables 6 and 7; Fig. 3). As high tide came in the animal moved from the mouth of 

Winyah Bay up through to SBC and then as the tide started to ebb, the animal moved back out 

through the bay to the mouth at low tide.  

Out of the eight acoustic transmitters, six of them had detection events that lasted over 90 

minutes (Table 8). There were a total of 16 detection events that lasted over 90 minutes (Table 

8). Transmitters #9043 and #9044 didn’t have any detection events over 90 minutes, and 

transmitter #9042 had the most detection events (6) over 90 minutes (Table 8).  

Five juvenile sandbar sharks were fitted with acoustic transmitters in May, 2019. High 

tide comprised one of the top two percentages of time for all five transmitters and high flood or 

high ebb were often the second highest percentage at the MNS receiver (Fig. 4). The least 

amount of time for all five transmitters was spent at the SBC Piling receiver (Fig. 4). Transmitter 

#9037 spent 0.2% of total time at this receiver, #9038 spent 0.78% of total time, #9039 spent 0% 

of total time, #9040 spent 0.3% of total time, and #9041 spent 1.1% of total time at the SBC 

Piling receiver (Fig. 4). These juvenile sandbar sharks were detected at the South Island Dock 

and Across South Island SCDNR receivers and spent more time at the South Island Dock 
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compared to the Across South Island receiver (Fig. 4). Other receivers were unavailable for data 

retrieval at the time of writing.  

Hurricane Florence hit on 9/14/18 and the last Winyah Bay detection was on that day, 

and there was not a detection in Winyah Bay until 9/17/18. After which there was only a single 

detection event (48 minutes) on only one of the SBC receivers. The salinity profile from the 

HOBO logger on the SBC Piling receiver from 9/01/18 through 10/12/18 displays how bottom 

salinity decreased to zero as the Waccamaw River flooded into Winyah Bay. The last detection 

of 2018 in Winyah Bay was from transmitter #9043 in the early hours of September 29, 2018 

(Fig. 6).   

Blood plasma 

 Sodium, chloride, urea, TMAO, potassium, and total osmolality all declined as salinity 

declined (Table 9; Figs. 7 - 19). TMAO had the greatest percent decrease as salinity decreased 

(39.01%) followed by urea (23.54%) and sodium and chloride decreased least with percentages 

of 13.11% and 13.83%, respectively (Table 9). There were significant differences between 

salinity groups for each osmotic component and total osmolality (Table 10; p < 0.001 for all 

components apart from potassium (p = 0.03)). Potassium had the fewest significant differences 

between groups as there was only a significant difference between the LSG and TSG (Table 11; 

Fig. 12). Whereas, urea and total osmolality had the most significant differences because only 

the TSG and SSG weren’t significantly different than each other (Table 11; Figs. 10 and 13). 

Total osmolality had the highest positive correlation to salinity (R2 = 0.7401) and potassium had 

the lowest positive correlation to salinity (R2 = 0.1891) (Figs. 18 and 19). 
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Discussion 

 This study was not only the first to reveal the extent of how juvenile sandbar sharks 

utilize lower salinity environments, but was also the first to reveal osmoregulatory changes with 

decreasing salinity that are comparable to juvenile bull sharks. In this study, juvenile sandbar 

sharks exhibited ecological and physiological adaptations within lower salinity environments that 

could potentially lead to energy savings, decreased predation, and increased prey items. Before 

this study, it was unknown whether a shark species other than the bull shark could partially iono- 

and osmoconform in less than marine conditions. 

Ecological Use of Winyah Bay 

Based on longline surveys and acoustic detections, juvenile sandbar sharks in this study 

were found in salinities as low as 11.5 and as high as 36.1. Juvenile sandbar sharks were caught 

on longlines in salinities ranging from 17.2 to 36.1, and an acoustically-tagged shark was 

detected at the SBC receivers with fixed salinity loggers at salinities from 11.5 to 24.7. The 

acoustic telemetry salinity range represented the middle to top range of the salinity range within 

SBC because both SBC salinity loggers did not record a value higher than 26. Acoustic receivers 

with salinity loggers revealed a larger salinity range than conventional longlining methods 

because conventional longlining trips are often scheduled during times when sharks are more 

numerous, high tide, and depend on the sharks being hungry and biting the bait. Whereas, the 

acoustic receivers with salinity loggers passively monitored shark movement with regards to 

salinity. These salinity ranges are comparable to previous studies on juvenile sandbar sharks 

(Carlson, 1998; Merson and Pratt, 2001; Thorpe, 2004; Abel et al., 2007; Grubbs and Musick, 

2007; McCandless et al., 2007; Gary, 2009; Bangley et al., 2018; Collatos, 2018). However, only 

one previous study described a salinity as low as 11.5 (Gary, 2009). Due to malfunctioning 
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salinity loggers at MNS in 2018 and 2019 and at SBC during 2019, a more complete salinity 

range for juvenile sandbar sharks within Winyah Bay could not be determined.   

 Salinity played a role in how juvenile sandbar shark size classes partitioned themselves 

within Winyah Bay. Our data demonstrate that different size classes of juvenile sandbar sharks 

utilize different salinities. Smaller juvenile sandbar sharks (PCL < 70 cm) in Winyah Bay were 

caught mostly in salinities < 28 and larger juvenile sandbar sharks (PCL > 70 cm) were more 

frequently caught in salinities > 30. Juvenile bull sharks in the Caloosahatchee River, San Carlos 

Bay, and Pine Island Sound area of southwest Florida were more likely to be located within the 

Caloosahatchee River when the stretched TL was less than 95 cm. If their stretched TL was 

greater than 95 cm, however, they were more likely to be caught in the more saline San Carlos 

Bay (Simpfendorfer et al., 2005). In addition, in Chesapeake Bay, smaller juvenile sandbar 

sharks were caught more in the upper, less saline, reaches of the bay and larger juvenile sandbar 

sharks were caught more frequently at the lower, more saline, reaches of the bay (Grubbs and 

Musick, 2007). The use of salinities of less than 28 by smaller juvenile sandbar sharks could be 

beneficial for this size class as energy used in osmoregulation decreases in lower salinities, 

especially for smaller animals (Ballantyne, 1997; Simpfendorfer et al., 2005; Abel et al., 2007; 

Heupel and Simpfendorfer, 2008; Ortega et al., 2009; Schlaff et al., 2014), the predation risk is 

decreased (Pillans and Franklin, 2004, Pillans et al., 2005), and preferred prey items, like spot 

(Leiostomus xanthurus), may be inhabiting these lower salinities (Abel et al., 2007; Collatos, 

2018). The energy saved, could be allocated to growth instead of osmoregulation or feeding, and 

the juveniles have a higher likelihood of surviving. Although the correlation coefficient between 

salinity and PCL was low in this study, there was still a significant difference between the PCL 

in the HSG and the three other lower salinity groups. Length and salinity data from juvenile 
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sandbar sharks from previous years and further sampling seasons could further determine the 

salinity preferences of each size class.  

 Acoustic telemetry detection events correlated to tidal phase revealed that six acoustically 

tagged juvenile sandbar sharks shifted locations within Winyah Bay with tidal currents. By 

moving the same direction as the tides, juvenile sandbar sharks are using less energy to move 

and thus allocate more energy to growth and survival. Previous studies on juvenile sandbar 

sharks have also shown movement with tides (Medved and Marshall, 1983; Wetherbee and 

Rechisky, 2000).  These studies were conducted by actively acoustically tracking the sandbar 

sharks in real time. Thus, these comparable studies are based on shorter time periods than this 

study. We were able to actively track two juvenile sandbar sharks and they moved with tidal 

currents; however, we were able to track them for only two hours. Movement with tidal currents 

is also supported by the fact that for the 2019 transmitters and transmitter #9042, receivers in 

Middle Bay had little to no detections at or near low tide compared to the receivers located at the 

mouth and outer channel of Winyah Bay, which had more detections events at or near low tide. 

The receiver that was most used by transmitter #9042, the SBC Channel receiver, was 

vandalized, and was not available for acoustic telemetry analysis for the five transmitters 

deployed in 2019. If this receiver had been available, percentage at high or low tide usage could 

be better understood within Middle Bay for the 2019 animals, instead of for only one 

acoustically-tagged juvenile in 2018. Detection ranges of acoustic tags within Winyah Bay were 

variable for this study and did not have 100% detection success at any distance tested, so many 

detections may have not been received (Appendix Range Testing). In addition, the SBC Channel 

receiver was unable to be tested for range during high tide because the receiver went missing 
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before we had the opportunity to range test, so an accurate count of high-tide detections at this 

site was not possible.  

 When detections were correlated with salinity measured by salinity loggers, salinity 

preference was determined by the duration spent during certain salinities. Salinity loggers within 

SBC during 2018, revealed that the single juvenile sandbar shark tagged in 2018, spent the 

majority of their time in brackish salinities between 16 and 25.9. Previous studies, suggest that 

juveniles occupying lower than fully seawater (~35) environments use less energy to 

osmoregulate and therefore can create a less stressful environment (Ballantyne, 1997; 

Simpfendorfer et al., 2005; Heupel and Simpfendorfer, 2008; Dowd et al., 2010; Froeschke et 

al., 2010; Schlaff et al., 2014). In a lab study on the euryhaline killifish, Fundulus heteroclitus, it 

was proposed that as the osmotic gradient is lower in freshwater than saltwater that freshwater 

environments are less stressful than saltwater environments, with brackish environments being 

the least osmotically stressful (Kidder et al., 2006). Duration in brackish salinities for juvenile 

sandbar sharks would be better defined if all the salinity loggers had functioned over the entire 

study period and at all receiver locations.  

Flooding from Hurricane Florence resulted in a large influx of freshwater into Winyah 

Bay and caused salinity to decrease. Hurricane Florence made landfall on September 14, 2018 

and no detections from transmitters 9042, 9043, and 9044, were recorded in Winyah Bay until 

the 17th. The only transmitter that had detections on the 17th was transmitter 9042, which is also 

the only acoustic tag deployed in 2018 that had detections over more than three days. During that 

time salinity decreased because of increased freshwater input from the flooding Waccamaw 

River and low tide had lower salinities (< 3) up until the salinity logger stopped recording on 

10/12/18. The last detection in Winyah Bay was at 0:05 on September 29th, 2018 at high tide. 
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However, this detection occurred at the SBC Piling receiver and with transmitter #9043, which 

only had four detection events. The other transmitter (#9042) that was more active during this 

time of 2018 was last detected on 9/24/18 and was detected only as far in the Bay as the South 

Island Dock receiver after Florence made landfall. These last detections occurred at the 

beginning of juvenile sandbar sharks southerly seasonal migration out of Winyah Bay. This 

migration period starts in September and goes through November (Collatos, 2018). Despite that 

this is the beginning of their migration period, high tide longline fishing trips after Hurricane 

Florence only resulted in two juvenile sandbar sharks being caught, which suggests that juvenile 

sandbar sharks were less common in the Bay after Florence and may have emigrated slightly 

earlier from Winyah Bay than in previous years. Freshwater input, similar to the results from 

Florence, has been shown to cause bull sharks, pigeye sharks (Carcharhinus amboinensis), and 

cownose rays (Rhinoptera bonasus) to move more towards marine inputs in estuarine systems, 

and large storms have caused blacktip sharks (Carcharhinus limbatus) to change their short-term 

movements (Heupel et al., 2003; Simpfendorfer et al., 2005; Collins et al., 2008; Heupel and 

Simpfendorfer, 2008; Froeschke et al., 2010; Knip et al., 2011). Some climate change models 

have indicated that large storms, like Hurricane Florence, will become stronger and more 

frequent with time, so it will be crucial to understand how the subsequent environmental effects, 

like increased freshwater input and large changes in barometric pressure, impact sandbar shark 

movement (Heupel et al., 2003; Chin et al., 2014).  

Osmoregulatory Changes 

 All osmolyte concentrations in juvenile sandbar sharks, in this study, were negatively 

correlated with salinity (> 32 to 17) and sodium, chloride, urea, and TMAO concentrations had a 

significant difference between the HSG and all other lower salinity groups. In a study on the 
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small-spotted catshark (Scyliorhinus canicula), 10 – 15% of their standard metabolism was spent 

on osmoregulation and this species is more sluggish than sandbar sharks (Kirschner, 1993). 

Therefore, any osmoregulatory adaptation, i.e., decreasing concentrations of osmolytes in lower 

salinity, could potentially save some osmoregulatory energy and allocate that energy to growing 

into an adult. By decreasing sodium and chloride concentration in a less saline environment, 

juvenile sandbar sharks are creating a lower concentration gradient between themselves and their 

environment, and thus are decreasing the energy used to continually pump these ions into the 

rectal gland to be excreted (Ballantyne, 1997). Energy expenditure is decreased because for 

every three sodium ions pumped, one ATP is used, and for every six chloride ions pumped, one 

ATP is used (Kirschner, 1993; Pillans et al., 2005). The decrease in urea production at lower 

salinities could also potentially lead to energy-savings that can be allocated towards growth 

(Simpfendorfer et al., 2005; Heupel and Simpfendorfer, 2008). Potassium is a very minor 

osmotic constituent and therefore, there was no significant change with salinity. Since, all major 

osmoregulatory components declined with declining salinity, total osmolality also significantly 

declined with declining salinity. 

Urea and TMAO both had the highest percent increase, 17.69% and 26.51%, 

respectively, between the TSG and HSG and a small percent increase between the SSG and TSG. 

There may be a salinity threshold at which it is energetically advantageous to start producing 

more urea for osmoregulation. Although there was a large percent increase in both urea and 

TMAO between the SSG and TSG to the HSG in this study this finding could be a result of the 

salinity groups chosen and further divisions of salinity groups would be able to demonstrate 

whether the percent increase in urea and TMAO is constant over the range of the middle two 

salinity groups. A larger sample size with more intermediate salinity samples could help to 
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determine if a true urea threshold exists. A similar urea trend was observed in juvenile and sub-

adult bull sharks. In this study, urea increased by 1.54% per salinity unit from freshwater through 

a salinity of 24, but that increase grew to 5.2% increase in urea per salinity unit from 27 – 33 

(Pillans and Franklin, 2004). Potassium is a very minor osmotic constituent and therefore, there 

was no significant change with salinity. Since, all major osmoregulatory components declined 

with declining salinity, total osmolality also significantly declined with declining salinity.  

Other studies on euryhaline bull sharks and Atlantic stingrays have shown that sodium, 

chloride, and urea concentrations were lower in freshwater than saltwater (Urist, 1962b; 

Piermarini and Evans, 1998; Pillans et al., 2004). Although juvenile sandbar sharks, in this study, 

were not found in freshwater, the sodium, chloride, and urea concentrations from this study did 

exhibit a decrease with decreasing salinity. This study was mostly compared to bull sharks 

because bull sharks are a sister taxon to sandbar sharks and juveniles of both species utilize 

varying salinity environments in similar ways. Reilly et al. (2001) studied bull sharks caught in 

salinities from 21 to 32, and found overlap between the sodium (247.5 ± 4.1 mM), chloride 

(242.8 ± 4.5 mM), urea (278.1 ± 12.2 mM), and potassium (4.5 ± 0.4 mM/L) values found in 

similar salinity juvenile sandbar sharks in this study.  Estuarine adult bull sharks in 50% seawater 

in Florida had similar sodium (233 ± 37 mM) and urea (220 ± 68 mM) concentrations to juvenile 

sandbar shark values found in this study at similar salinities (Thorson et al., 1973). Adult bull 

sharks in full seawater in Florida had similar sodium (288 ± 12 mM), chloride (288 ± 21 mM), 

and urea (356 ± 67 mM) concentrations to the juvenile sandbar sharks in the HSG in this study 

(Thorson et al., 1973). Similar osmoregulatory studies on juvenile bull sharks had significant 

differences in potassium concentrations with salinity (Thorson et al., 1973; Pillans and Franklin, 

2004), whereas there were other studies that did not have significant difference in potassium 
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(Pillans et al., 2005; Coelho and Erzini, 2006). With a larger sample size, variation within 

potassium concentrations would decrease. Similar osmoregulatory components, in the same 

salinities seen in this study, outside of the family Carcharhinidae are emboldened in Table 2 in 

the Appendix. Even though this study has shown that juvenile sandbar sharks do decrease the 

concentration of their osmotic components in lower salinities, these values are not equal to their 

environment, and further laboratory experiments could determine the extent to which juvenile 

sandbar shark osmotic components can decrease. 

Conclusions 

 Future research to quantify plasma components for more blood samples in addition to 

seawater samples to compare osmolyte concentrations to the animal’s environment would help to 

determine to what extent juvenile sandbar sharks iono- and osmoconform to their environment. 

Observing acoustically tagged juvenile sandbar sharks for longer periods of time, with 

functioning salinity loggers, would reveal more information about juvenile sandbar shark 

movement through varying salinities. 

From the acoustic telemetry and salinity data, it is concluded that juvenile sandbar sharks 

move with tides in search of brackish salinities from 16 to 26 in middle bay and utilize the lower 

range of the salinity range in MNS and the channel outside of Winyah Bay. Juvenile sandbar 

sharks decrease organic and inorganic osmoregulatory components to be more similar to their 

environment and smaller juveniles use brackish salinities to potentially conserve osmoregulatory 

energy for growth and to avoid some predation risk. More research needs to be done to 

determine the rate a which juvenile sandbar sharks lower their osmolality, the energetic benefits 

of partial iono- and conforming, and to determine more completely what the salinity range and 

preference are for sandbar sharks in this system. 
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Tables 

Table 1: Salinity and precaudal length measurements by salinity group for juvenile sandbar 

sharks from which plasma samples were taken (n=43). 
Salinity 

Group 

Salinity Range 
(Mean ± S.E.) 

n Precaudal Length, cm 
(Mean ± S.E.) 

1 17 – 21.9 (20.1 ± 0.3) 14 76.1 ± 3.3 

2 22 – 26.9 (24.8 ± 0.5) 9 85.7 ± 3.3 

3 27 – 31.9 (29.9 ± 0.5) 9 83.3 ± 3.9 

4 > 32 (33.7 ± 0.2) 11 98.3 ± 2.8 
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Table 2: Salinity and precaudal length measurements by salinity group for all juvenile sandbar 

sharks caught in this study (n=118). 
Salinity 

Group 

Salinity Range  

(Mean ± S.E.) 

n Precaudal Length, cm 

(Mean ± S.E.) 

1 17 – 21.9 (20 ± 0.2) 34 79.6 ± 3.3 

2 22 – 26.9 (25 ± 0.2) 38 80.6 ± 2.2 

3 27 – 31.9 (29.3 ± 0.4) 18 84.4 ± 3.5 

4 > 32 (33.8 ± 0.2) 28 96.8 ± 1.9 
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Table 3: ANOVA statistical results for precaudal lengths for juvenile sandbar sharks utilized in 

the plasma study and for all juvenile sandbar sharks caught in this study.  
Length measurement p-value (plasma study juveniles) p-value (all juveniles) 

PCL 0.000177* < 0.001* 
*Indicates significant difference (p < 0.05) 
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Table 4: Post-hoc Tukey test p-values for precaudal lengths of juvenile sandbar sharks utilized in 

the plasma study and for all juvenile sandbar sharks caught in this study. 
Interaction Precaudal Length (Plasma Juveniles) Precaudal Length (All Juveniles) 

1 x 4 0.0000673* 0.0000130* 

2 x 4 0.0673617 0.0000807* 

3 x 4 0.0211358* 0.0266684* 

2 x 1 0.1878833 0.9321876 

3 x 1 0.4250909 0.4901103 

3 x 2 0.9666081 0.7770312 
*Indicates significant difference (p < 0.05) 
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Table 5: Percentage of detections at each of the Winyah Bay receivers for transmitter #9042. 

These percentages are based on the number of detections and not the duration of detections. 

Detections occurred from 8/10/18 – 9/24/18. The receivers are listed from the mouth of Winyah 

Bay up through to the head of Winyah Bay. 

Acoustic Receiver Number of Detections Percentage of Detections 

LB4* 10 0.5 

LB5* 188 9.3 

LB7* 463 22.8 

MNS 157 7.7 

South Island Dock* 434 21.4 

SBC Piling 84 4.1 

SBC Channel 671 33 

Near Mud Bay* 25 1.2 

Total 2032  
*SCDNR Receiver 
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Table 6: Duration (minutes) at specific Winyah Bay receivers for transmitter #9042 by tidal phase. Time events were compiled of 

detections that were less than 20 minutes apart at the same acoustic receiver. Ebb and flood tides were determined to be high if the 

detections occurred within three hours of high tide and low if the detections occurred within three hours of low tide. If detections 

didn’t fall within three hours of either high or low tide, detections were named either ebb or flood tide. Detections occurred from 

8/10/18 – 9/24/18. The receivers are listed from the mouth of Winyah Bay up through to the head of Winyah Bay. 

Acoustic Receiver 

   Duration (minutes) 

Total Low Ebb Tide High Ebb Tide  Ebb Tide Low Flood Tide High Flood Tide Flood Tide  Low Tide  High Tide 

 LB4* 12 0 7 0 0 0 0 5 0 

 LB5* 392 66 0 0 63 0 0 263 0 

 LB7* 758 19 0 0 292 8 0 439 0 

MNS 249 11 59 0 74 71 7 17 10 

South Island Dock* 647 98 118 8 19 204 0 66 134 

SBC Piling 193 8 32 0 0 78 0 0 75 

SBC Channel 1610 49 507 0 0 224 0 0 830 

Near Mud Bay* 30 0 30 0 0 0 0 0 0 

Total 3891 251 753 8 448 585 7 790 1049 
*SCDNR Receiver 
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Table 7: Percentage of time spent at specific Winyah Bay receivers for transmitter #9042 by tidal phase. Percentages at each tide 

represent the proportion of total time at that specific receiver. Ebb and flood tides were determined to be high if the detections 

occurred within three hours of high tide and low if the detections occurred within three hours of low tide. If detections didn’t fall 

within three hours of either high or low tide, detections were named either ebb or flood tide. Detections occurred from 8/10/18 – 

9/24/18. The receivers are listed from the mouth of Winyah Bay up through to the head of Winyah Bay. 

Acoustic Receiver 

   
Percentage of Time 

Total Low Ebb Tide High Ebb Tide  Ebb Tide Low Flood Tide High Flood Tide  Flood Tide  Low Tide  High Tide 

 LB4* 0.31 0 58.3 0 0 0 0 41.7 0 

 LB5* 10.1 16.8 0 0 16.1 0 0 67.1 0 

 LB7* 19.5 2.5 0 0 38.5 1.1 0 57.9 0 

MNS 6.4 4.4 23.7 0 29.7 28.5 2.8 6.8 4 

South Island Dock* 16.7 15.1 18.2 1.2 2.9 31.5 0 10.2 20.7 

SBC Piling 5 4.1 16.6 0 0 40.4 0 0 38.9 

SBC Channel 41.5 3 31.5 0 0 13.9 0 0 51.6 

Near Mud Bay* 0.77 0 100 0 0 0 0 0 0 

Total 100 6.5 19.4 0.21 11.5 15 0.18 20.3 27 
*SCDNR Receiver
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Table 8: Detection events lasting over 90 minutes for all transmitters in chronological order. 90 minutes was chosen as the threshold 

for a long detection because it is about a quarter of a tidal cycle.  

Date 

Transmitter 

Number Time Span 

Total Time 

(Minutes) 

Number of 

Detections Receiver Location 

Salinity 

Range Tidal Stage 

8/12/18-8/13/18 9042 23:01-1:02 121 52 SBC Mount 24.7-24.6 High/High Ebb 

8/17/18 9042 7:04-8:47 103 50 LB 7* a Low 

8/26/18 9042 21:29-23:32 123 33 SBC Mount 20.3-22.3 High/High Ebb 

8/27/18 9042 14:10-15:52 102 33 LB 5* a Low Ebb/Low 

8/28/18-8/29/18 9042 22:43-0:33 110 32 SBC Mount 18.4-20.1 High/High Ebb 

8/30/18-8/31/18 9042 23:00-2:21 201 115 SBC Mount 12.1-13.8 High Flood/High/High Ebb 

5/11/19 9040 13:37-15:58 141 83 MNS b High/High Ebb 

5/12/19 9040 15:01-17:04 123 55 MNS b High/High Ebb 

5/15/19 9037 19:13-20:43 90 41 South Island Dock a High/High Ebb 

5/24/19 9039 0:15-2:38 143 73 MNS b High/High Ebb 

5/24/19 9040 0:43-2:20 97 56 South Island Dock a High 

5/25/19 9039 14:44-18:04 200 37 MNS b High/High Ebb 

5/25/19 9039 21:05-23:09 124 76 MNS b Low/Low Flood 

5/26/19 9040 14:03-16:22 139 66 MNS b High/High Ebb 

5/27/19 9038 3:57-6:10 133 76 South Island Dock a High/High Ebb 

5/29/19 9041 0:28-2:04 96 31 MNS b Low Flood/Slack Flood 
*SCDNR Receiver 
aSalinity values not available as salinity loggers are not present on SCDNR receivers 
bSalinity values not available as salinity logger malfunctioned 
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Table 9: Plasma osmolyte concentrations and total osmolality values with samples sizes divided by salinity group. 
Salinity 

Group 

Salinity 

Range 

Sodium 

Concentration 

(mM)  

Mean ± S.E. (n) 

Chloride 

Concentration 

(mM)  

Mean ± S.E. (n) 

Urea 

Concentration 

(mM)  

Mean ± S.E. (n) 

TMAO 

Concentration 

(mM) 

Mean ± S.E. (n) 

Potassium 

Concentration 

(mM)  

Mean ± S.E. (n) 

Total Osmolality 

(mOsm/kg)  

Mean ± S.E. (n) 

1 17-21.9 243.15 ± 2.82 

(14) 

241.91 ± 2.86 (14) 269.34 ± 5.97 (14) 49.69 ± 2.59 (14) 4.35 ± 0.21 (12) 822.24 ± 11.62 (14) 

2 22-26.9 251.44 ± 3.53 (9) 251.92 ± 4.52 (9) 299.49 ± 11.46 (9) 56.07 ± 4.45 (9) 4.72 ± 0.2 (8) 889.44 ± 18.10 (9) 

3 27-31.9 264.20 ± 4.51 (9) 262.01 ± 4.05 (9) 299.30 ± 6.14 (9) 59.64 ± 3.49 (9) 5.21 ± 0.32 (6) 921.89 ± 14.89 (9) 

4 >32 279.84 ± 2.06 (9) 280.73 ± 1.72 (10) 352.25 ± 5.95 (11) 81.15 ± 3.92 (10) 5.09 ± 0.10 (7) 998.73 ± 12.61 (11) 
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Table 10: Statistical ANOVA F and p-values for plasma osmolyte concentrations and total 

osmolality. 
Plasma component F value P value 

Sodium 24.34 < 0.001* 

Chloride 26.62 < 0.001* 

Urea 24.66 < 0.001* 

TMAO 15.7 < 0.001* 

Potassium 3.347 0.0326* 

Total osmolality 31.38 < 0.001* 

*Indicates significant difference (p < 0.05) 
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Table 11: Post-hoc Tukey test p-values for plasma osmolyte concentrations and total osmolality. 
Interaction Sodium Chloride Urea TMAO Potassium Total Osmolality 

1 x 4 0* 0* 0* 0.0000004* 0.0899073 0* 

2 x 4 0.0000088* 0.0000057* 0.0001038* 0.0001398* 0.6863160 0.0000266* 

3 x 4 0.0163056* 0.0028843* 0.0000983* 0.0010905* 0.9831615 0.0032091* 

2 x 1 0.2712104 0.1505741 0.0273640* 0.5594059 0.5740450 0.0073652* 

3 x 1 0.0002170* 0.0005237* 0.0286337* 0.1886019 0.0488093* 0.0000527* 

3 x 2 0.0657662 0.2086030 0.9999983 0.9095421 0.4862368 0.4445851 
*Indicates significant difference (p < 0.05) 

 

 

 



34 

 

Figures 

  
Figure 1: Map of acoustic receiver locations in Winyah Bay, SC. All SCDNR receivers are labelled with the name given to the 

receiver by SCDNR.  

NERRS: National Estuarine Research Reserve System 

SBC: Sandbar City 

MNS: Mother Norton Shoals 

 

Channel 
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Figure 2: Precaudal lengths (cm) vs. salinity for both the juvenile sandbar sharks in the plasma study and all juvenile sandbar sharks 

caught. 
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Figure 3: Percentage of time at each tidal phase for each acoustic receiver visited by transmitter #9042 in Winyah Bay, SC (8/10/18 – 

9/24/18). The size of pie charts does not reflect the proportion of total time duration spent at each these Winyah Bay acoustic 

receivers. The percentages in white boxes represent the percentage of total time duration spent at each of these Winyah Bay acoustic 

receivers. 
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Mother Norton Shoals (47%) 

 
Across South Island Dock (6.8%) 

 
South Island Dock (45.7%)  

Sandbar City Piling (0.5%) 

 

Figure 4: Percentage of time at each tidal phase for transmitters deployed in 2019 (05/08/19 – 05/29/18). Receivers are arranged from 

the mouth of Winyah Bay to Middle Bay.  The percentage next to the receiver name represents the percentage of total time spent at 

each receiver for all five receivers. The percentage above the bars represent the percentage of time spent at that specific receiver for 

that transmitter. 
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Figure 5: Duration as a function of salinity group for transmitter #9042 at the two Sandbar City 

receivers. Percentage of time spent at each salinity is shown above the salinity group.
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Figure 6: Salinity profile from the Sandbar City Piling HOBO conductivity logger from 9/01/18 – 10/12/18. The profile represents the 

time from when Hurricane Florence made landfall (9/14/18) through when the Waccamaw River was flooding into Winyah Bay.
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Figure 7: Mean concentrations for all osmolyte components measured for each salinity group (17 

– 21.9, 22 – 26.9, 27 – 31.9, >32). 
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Figure 8: Sodium concentrations (Mean ± S.E.) for each salinity group (17 – 21.9, 22 – 26.9, 27 

– 31.9, >32). Letters indicate significant differences between salinity groups based on the post-

hoc Tukey tests.  
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Figure 9: Chloride concentrations (Mean ± S.E.) for each salinity group (17 – 21.9, 22 – 26.9, 27 

– 31.9, >32). Letters indicate significant differences between salinity groups based on the post-

hoc Tukey tests. 
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Figure 10: Urea concentrations (Mean ± S.E.) for each salinity group (17 – 21.9, 22 – 26.9, 27 – 

31.9, >32). Letters indicate significant differences between salinity groups based on the post-hoc 

Tukey tests. 
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Figure 11: TMAO (trimethylamine oxide) concentrations (Mean ± S.E.) for each salinity group 

(17 – 21.9, 22 – 26.9, 27 – 31.9, >32). Letters indicate significant differences between salinity 

groups based on the post-hoc Tukey tests. 
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Figure 12: Potassium concentrations (Mean ± S.E.) for each salinity group (17 – 21.9, 22 – 26.9, 

27 – 31.9, >32). Letters indicate significant differences between salinity groups based on the 

post-hoc Tukey tests. 
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Figure 13: Total osmolality (Mean ± S.E.) for each salinity group (17 – 21.9, 22 – 26.9, 27 – 

31.9, >32). Letters indicate significant differences between salinity groups based on the post-hoc 

Tukey tests. 
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Figure 14: Plasma sodium concentration vs. environmental salinity. 
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Figure 15: Plasma chloride concentration vs. environmental salinity. 
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Figure 16: Plasma urea concentration vs. environmental salinity. 
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Figure 17: Plasma TMAO concentration vs. environmental salinity. 
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Figure 18: Plasma potassium concentration vs. environmental salinity. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

y = 0.0542x + 3.3433
R² = 0.1891

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

10 15 20 25 30 35 40

C
o

n
ce

n
tr

a
ti

o
n

 (
m

M
)

Salinity



 52 

 
Figure 19: Plasma total osmolality vs. environmental salinity. 
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Appendix 

Literary Review of Osmoregulatory Values 

Table 1: Osmolyte concentrations and total osmolality for members of the Family Carcharhinidae 
Species Environme

nt 

Na+ 

(mM/L) 

Cl- (mM/L) Urea 

(mM/L) 

TMAO 

(mM/L) 

Potassium 

(mM/L) 

Total osmolality 

(mOsm/kg) 

Source 

Carcharhinus isodon SW 238 270      Sulya et al., 1960 

Carcharhinus leucas SW 223.4a 236a 333a  9.0  Urist, 1962b 

Carcharhinus leucas SW 223.4 ± 20.1   236 ± 21      Urist and Van de Putte, 1967 

Carcharhinus leucas 

(FL adults) 

SW 288 ± 12  288 ± 21  356 ± 67  30.7 - 53.6  6.1 ± 0.47  Thorson et al., 1973 

Carcharhinus leucas SW 285 – 294b 201 - 204b   5.7 – 6.7b  Manire et al., 2001 

Carcharhinus leucas SW 289 ± 3a 296 ± 6a 370 ± 9.5a    Pillans and Franklin, 2004 

Carcharhinus leucas SW 304 ± 3  315 ± 3  293 ± 10  47.3 ± 4.5  5.8 ± 0.3 940 ± 10c Pillans et al., 2005 

Carcharhinus leucas SW 305 ± 6  315 ± 5 292 ± 13  24.8 ± 2.1   947 ± 17  Pillans et al., 2008 

Carcharhinus leucas SW (21-32 
ppt) 

247.5 ± 4.1   242.8 ± 4.5  278.1 ± 12.2   4.5 ± 0.4 797.5 ± 15.6  Reilly et al., 2011 

Carcharhinus leucas 

(Estuarine adults) 

50% SW 233 ± 37  233 ± 60  220 ± 68  8.9 - 23.3  5.9 ± 0.37  Thorson et al., 1973 

Carcharhinus leucas FW 200.12a 180.5a 132a  8.2  Urist, 1962b 

Carcharhinus leucas FW 245.8  219.3  180     Thorson, 1967 

Carcharhinus leucas FW (Lake 

Nicaragua) 

1.3  1.8      Urist and Van de Putte, 1967 

Carcharhinus leucas FW (San 

Juan River, 

CA) 

0.7  0.8      Urist and Van de Putte, 1967 

Carcharhinus leucas 
(Adults) 

FW 245 ± 31  219 ± 40  169 ± 48   6.4 ± 0.29  Thorson et al., 1973 

Carcharhinus leucas 

(Juveniles) 

FW 228 ± 24  207 ± 28 138 ± 24   6.3 ± 0.43  Thorson et al., 1973 

Carcharhinus leucas FW 208 ± 3a 203 ± 3a 192 ± 21.7a    Pillans and Franklin, 2004 

Carcharhinus leucas FW 221 ± 4  220 ± 4  151 ± 5  19.1 ± 1.5   4.2 ± 0.2 595 ± 11c Pillans et al., 2005 

Carcharhinus leucas FW 233 ± 3  233 ± 4  159 ± 8 13.2 ± 1.5   613 ± 17  Pillans et al., 2008 

Carcharhinus leucas FW (0-5 ppt) 234 ± 1.7  230.7 ± 1.6  168 ± 6.9  4.1 ± 0.1 639.7 ± 14.1  Reilly et al., 2011 

Carcharhinus leucas 

nicaraguensis 

SW 200.12 ± 21  180.5 ± 24.1      Urist and Van de Putte, 1967 

Carcharhinus leucas 

nicaraguensis 

FW 200.1  180.5  132    404.3  Urist, 1961 

Carcharhinus 
littoralis 

SW 267  235  381     Smith, 1929 
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Carcharhinus 

limbatus 

SW 313 - 329b 207 – 212b   3 – 4.3b  Manire et al., 2001 

Carcharhinus 

obscurus 

SW     3.3 1027 Cliff and Thurman, 1984 

Carcharhinus 
melanopterus 

FW  158  103    484  Smith, 1931 

Negaprion 

brevirostris 

SW 307  277      Oppelt et al., 1966 

Negaprion 

brevirostris 

SW  310 ± 5  421 ± 2  76 ± 4    Goldstein et al., 1968 

Negaprion 

brevirostris 

50% SW  252 ± 2  191 ± 4  31 ± 2    Goldstein et al., 1968 

Rhizoprionodon 

terraenovae 

SW     4.9 – 7.6 1013 – 1300d Haman et al., 2012 

a. mM 
b. mEq/L 
c. mOsm/L*kg  
d.mOsm 
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Table 2: Osmolyte concentrations and total osmolality for Elasmobranchs not in the Family Carcharhinidae 

 
Species Environment Na+ 

(mM/L) 

Cl-   

(mM/L) 

Urea 

(mM/L) 

TMAO 

(mM/L) 

Potassium 

(mM/L) 

Total osmolality 

(mOsm/L) 

Source 

Raja clavata (Females) SW  285    1095  Pora, 1936c 

Raja clavata SW 289d 311d 444d   995  Murray and Potts, 1961 

Raja clavata SW 285  240      Enger, 1964 

Raja diaphenes SW 237  227  377     Smith, 1929 

Raja eglanteria SW 243  249  366     Price, 1967 
Raja eglanteria SW  222  368    844  Price and Creaser, 1967 

Raja erinacea SW 254  355  320     Hartman et al., 1941 

Raja erinacea SW 260  253  285    917  Maren et al., 1963 

Raja erinacea SW  287 ± 4a 396 ± 1a 48 ± 3a   Goldstein and Forester, 1971 

Raja erinacea 50% SW  202 ± 9a 220 ± 9a 35 ± 5a   Goldstein and Forester, 1971 

Raja ocellata SW 285  255     928  Maren et al., 1963 

Raja stabuloforis SW 255  241  453     Smith, 1929 

Raja undulata (Males) SW      1097  Pora, 1936b 

Raja undulata 

(Females) 

SW      1125  Pora, 1936b 

Zapteryx brevirostris 35ppt 227a  406-458a  8 – 10a 980 - 985c Wosnick and Freire, 2013 
Zapteryx brevirostris 25ppt 195a      Wosnick and Freire, 2013 

Zapteryx brevirostris 15ppt     4a 795c Wosnick and Freire, 2013 

Zapteryx brevirostris 5ppt 168a  266a  4a 713c Wosnick and Freire, 2013 

Dasyatis americana SW 251  256  351    864  Bernard et al., 1966 

Dasyatis americana SW 315  342  444   5 1065g Cain et al., 2004 

Dasyatis sabina SW 310 ± 5  300 ± 4.5  394.5 ± 5.5    1034 ± 7.5c De Vlaming and Sage, 1973 

Dasyatis sabina SW 279 ± 13 289 ± 7 346 ± 17   891 ± 4i Janech et al., 2006 

Dasyatis sabina 50% SW 216 ± 6 235 ± 6 327 ± 16   741 ± 13i Janech et al., 2006 

Dasyatis sabina FW 212 ± 2.8   208 ± 3.4  196 ± 7.9   6.95 ± 0.7  621.4 ± 10.8c Piermarini and Evans, 1998 

Dasyatis sabina (Lake 

Jesup) 

FW (Lake) 3 ± 1.4  3.7 ± 1.5    5.2 ± 0.25 38 ± 0.5c Piermarini and Evans, 1998 

Dasyatis saj SW 256  262  382    840  Bernard et al., 1966 
Dasyatis uarnak FW  212a 104a   548c Smith, 1931 

Himantura signifer 15ppt   153 ± 4a    Chew et al., 2006 

Himantura signifer 1 ppt   74 ± 2a    Chew et al., 2006 

Narcine brasiliensis  134  159  209     Pereira and Sawaya, 1957 

Platyrhinoidis triseriata SW 234  208      Urist, 1961 

Potamotrygonidae sp. 14.5 ppt 198.3 ± 

2.7b 

183.1 ± 2b 2.31 ± 0.77     Griffith et al., 1973 
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Potamotrygonidae sp. FW 164 ± 

5.6b 

151.7 ± 5b 1.08 ± 0.13     Griffith et al., 1973 

Potamotrygonidae sp. FW 178 ± 

4.8a 

146 ± 2.1a 1.2 ± 

0.185a 

  319.6 ± 8.5c Wood et al., 2002 

Potamotrygon 
garouaensis 

FW 153   212     Thorson and Watson, 1975 

Potamotrygon motoro 13 ppt 166 ± 7  180 ± 5  1.28 ± 0.07    378 ± 9c Tam et al., 2003 

Potamotrygon motoro 0.7 ppt 157 ± 16  163 ± 14  0.65 ± 0.17    349 ± 16c Tam et al., 2003 

Pristis microdon FW  170  130    548  Smith, 1931 

Pristis microdon FW   130a    Holmes and Donaldson, 1969 

Pristis perotteti FW 216.6  193.1      Thorson, 1967 

Rhinoptera bonasus SW 276 ± 36  255 ± 33    1.5 ± 0.4  Ferreira et al., 2010 

Rhinobatus percellens  143  144  349     Pereira and Sawaya, 1957 

Torpedo marmorata 

(Males) 

SW  369     1098  Pora, 1936c 

Urolophus jamaicensis SW 301 ± 5  325 ± 4  384 ± 5  4.27 ± 0.2 1010 ± 5c Sulikowski and Maginniss, 

2001 
Urolophus jamaicensis 82% SW 260 ± 6  279 ± 4  307 ± 12   3.9 ± 0.09 851 ± 8c Sulikowski and Maginniss, 

2001 

Urolophus jamaicensis 74% SW 233 ± 7  247 ± 5  295 ± 12   3.84 ± 1.5 773 ± 6c  Sulikowski and Maginniss, 

2001 

Urolophus jamaicensis 66% SW 240 ± 12  265 ± 16  168 ± 44   3.77 ± 0.19 704 ± 12c Sulikowski and Maginniss, 

2001 

Ginglymostoma 

cirratum 

SW 291  287      Oppelt et al., 1966 

Chiloscyllium 

punctatum 

25 ppt 251.56 ± 

13.8  

218.67 ± 

11.81  

301.70 ± 

59.56  

 4.98 ± 0.46 787 ± 6c Cramp et al., 2015 

Chiloscyllium 
punctatum 

34 ppt 290.74 ± 

10.98   

255.56 ± 
17.72  

448.63 ± 
55.34  

 6.52 ± 2.69 1019 ± 10c Cramp et al., 2015 

Chiloscyllium 

punctatum 

40 ppt 309.44 ± 

15.9  

262.22 ± 

18.32  

675.06 ± 

63.4  

 5.44 ± 0.81 1153 ± 6c Cramp et al., 2015 

Heterodontus francisci SW 235 ± 6.9  230 ± 9.8  338     Urist and Van de Putte, 1967 

Heterodontus 

portusjacksoni 

SW 359 ± 4a 310 ± 3a 269 ± 16a 57 ± 12a  987 ± 13g Cooper and Morris, 1998 

Heterodontus triseriata SW 235  230  338     Urist and Van de Putte, 1967 

Hypolopus sephen FW  146  81     Smith, 1931 

Mustelis canis SW      1011  Garrey, 1905 

Mustelis canis SW 270  234  381     Smith, 1929 

Mustelis canis SW  275d     970  Davson and Grant, 1960 

Mustelis canis SW 288d 270d 342d 97d  962  Doolittle et al., 1960 
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Mustelis canis SW      981.3  Bloete et al., 1961 

Mustelis canis (Males) SW 255.4 ± 2 253 ± 3.5  981.1 ± 

12.7f 

 4.3 ± 0.5 838.6 ± 5.6c Persky et al., 2012 

Mustelis canis 

(Females) 

SW 255.3 ± 

3.8  

254.6 ± 6.1  993.8 ± 

23.1f 

 4.0 ± 0.5 843.1 ± 12.7c Persky et al., 2012 

Scyliorhinus canicula 

(Males) 

SW 156  299     1107  Pora, 1936a 

Scyliorhinus canicula 

(Females) 

SW 192  277     1098  Pora, 1936a 

Scyliorhinus canicula 140% SW 378.2 ± 

19.3  

383 ± 15.6  467.7 ± 7.1    1341 ± 6.7  Hazon and Henderson, 1984 

Scyliorhinus canicula 120% SW 352.6 ± 

9.8  

363.4 ± 5.4  376.4 ± 7.4    1168 ± 4.4  Hazon and Henderson, 1984 

Scyliorhinus canicula 100% SW 278.8 ± 

8.9  

297.6 ± 5.6  311.4 ± 5.5    970.3 ± 4.4  Hazon and Henderson, 1984 

Scyliorhinus canicula 90% SW 223.4 ± 

2.8  

238.6 ± 3.8  280.1 ± 4.4    845.9 ± 6.8  Hazon and Henderson, 1984 

Scyliorhinus canicula 80% SW 211.1 ± 

2.9  

212.9 ± 3.7  208.7 ± 3.9    754.3 ± 2.9  Hazon and Henderson, 1984 

Scyliorhinus canicula 70% SW 198.8 ± 

4.3  

202 ± 4.4  160.7 ± 2.3    684 ± 4  Hazon and Henderson, 1984 

Scyliorhinus canicula 60% SW 197 ± 8.4 198.5 ± 5.2  120.1 ± 3.4    600.2 ± 3.3  Hazon and Henderson, 1984 

Scyliorhinus canicula 50% SW 184 ± 5.2 186.4 ± 5.6  82.2 ± 4.4    503.3 ± 3.8  Hazon and Henderson, 1984 

Sphyrna tiburo SW 289  254      Sulya et al., 1960 

Sphyrna tiburo 40ppt 319 ± 

14.2  

354 ± 24  354.3 ± 

24.3  

95.2 ± 13.9  7.2 ± 1.5  Mandrup-Poulsen, 1981 

Sphyrna tiburo 30ppt 258.3 ± 

3.3  

279.1 ± 8.1  289.6 ± 

30.3  

67.1 ± 17.3  6 ± 1.8  Mandrup-Poulsen, 1981 

Sphyrna tiburo 20ppt 241.6 ± 

4.1  

264.1 ± 6  178.8 ± 

32.8  

45.3 ± 14.2  4.8 ± 0.2  Mandrup-Poulsen, 1981 

 

Sphyrna tiburo SW 306 – 

317b 

206 - 209b   6 – 7.1b  Manire et al., 2001 

Sphyrna tiburo SW 273 - 292  277 - 304  337 - 381   5.7 – 9.2 1056 - 1139  Harms et al., 2002 

Sphyrna tiburo SW     5 – 7.8 997 – 1329g Haman et al., 2012 

Squalus acanthias SW    71    Cohen et al., 1958 

Squalus acanthias SW 286  246  351    1018g Burger and Hess, 1960 

Squalus acanthias SW 255  239     973h Maren, 1962 

Squalus acanthias SW 240  259      Robin et al., 1964 

Squalus acanthias SW 234.6     997  Burger, 1965 

Squalus acanthias SW 250   330    980  Boylan, 1967 
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Squalus acanthias (wild 

plasma) 

SW 233 - 240  228 - 245     996 - 1030  Burger, 1967 

Squalus acanthias 

(Live-car plasma) 

SW 253 - 262  222 - 262      948 - 1036  Burger, 1967 

Squalus acanthias SW   343  84.7    Forster, 1967 
Squalus acanthias SW 263  249  357    1007  Murdaugh and Robin, 1967 

Squalus acanthias SW 296 ± 

24.4e 

276 ± 21.6e 308 ± 31.3e 72.4 ± 15e 7.2 ± 1.8e 993 ± 5.6c Robertson, 1975 

Squalus acanthias SW     3.2 – 4.8 699 – 1210g Haman et al., 2012 

Squatina angelus 

(Males) 

SW  255     1102  Pora, 1936c 

Triakis semifasciatus SW 235  230  333     Urist, 1962b 
a mM      
b mEq/L   
c mOsm/kg   
d mM/kg 
e mM/kg H2O 
f mg/dl  
g mOsm 
h mOsm/L*kg 
I mOsm/kgH2O
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Shapiro-Wilkes Normality Tests  

Precaudal lengths for juvenile sandbar sharks utilized in the plasma study 

Shapiro Wilkes Test  

W=0.96149 

p=0.1571 

 

Precaudal lengths (log transformed) for all juvenile sandbar sharks caught for this study 

Shapiro Wilkes Test  

W=0.98647 

p=0.2884 

 

Sodium 

Shapiro Wilkes Test  

W=0.95338 

p=0.09203 

Chloride 

Shapiro Wilkes Test  

W=0.95523 

p=0.09953 

Urea 

Shapiro Wilkes Test  

W=0.95708 

p=0.1083 

TMAO 

Shapiro Wilkes Test  

W=0.97032 

p=0.3384 

Potassium 

Shapiro Wilkes Test  

W=0.98449 

p=0.9071 

Total osmolality 

Shapiro Wilkes Test  

W=0.97672 

p=0.5229 
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Range Testing 

From Collatos, 2018 

 
From this study 

 
Detection efficiency percentages were very variable. Low tide was unable to be measured at 

Mother Norton Shoals as the receiver was moved and High tide was unable to be measured at the 

Sandbar City Channel receiver because the receiver was lost 
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