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ABSTRACT 

The digestive tracts and livers of adult male Atlantic sharpnose sharks (N=16), 

Rhizoprionodon terraenovae, from Winyah Bay, South Carolina were examined for ingested 

microplastics. R. terraenovae is a small, locally abundant, coastal mesopredatory elasmobranch 

belonging to the family Carcharhinidae. Microfibers comprised the largest categories of plastics 

(94% of the total), and were found in 100% of sharks examined. The number of micro- and other 

plastics ranged from 34 to 75 per individual and totaled 927. The majority of plastics (40%) were 

blue in coloration, and 55% were <1 mm in length.  Microplastics were observed on both the 

interior and exterior of the organs examined, and three microfibers were embedded within the 

stomach lining, an observation not previously reported in marine vertebrates and one which 

represents a potential pathway for the translocation of ingested microplastics.  
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INTRODUCTION 

OVERVIEW OF PLASTICS 

Plastics directly impact a wide range of organisms and their environments, with many 

products composed of plastic being discarded after a single use (Cole et al., 2013). Shipping, 

illegal dumping, and discarded fishing gear also add a substantial amount of plastics directly to 

the sea (Gregory, 2009). Land-based sources including landfills, littering, and outfalls from 

industry further contribute to marine plastic pollution. Eriksen et al. (2014) estimates that 5.25 

trillion plastic particles, weighing approximately 268,940 tons, are currently in the ocean. The 

most abundant types of plastics in the environment include polyethylene, polypropylene, and 

polystyrene (Mato et al., 2001). Plastic pollution has resulted in major environmental 

consequences, including an increase in entanglement (e.g., the phenomenon of ghost fishing, 

abandoned but still functional nets), transportation of invasive species, and ingestion of plastics 

by marine species (Gregory, 2009).  

 

INGESTION OF PLASTICS 

Upon consumption, hard plastics can cause damage by punctures and tears, whereas other 

plastic materials (i.e., plastic bags) can lead to digestive tract blockages (Lusher et al., 2013). 

Blockages may reduce the uptake of nutrients and prevent normal digestive function, and in 

doing so may cause malnourishment and death.  Davison et al. (2011) estimated the amount of 

plastic debris consumed by mesopelagic fishes in the North Pacific Subtropical Gyre ranges 

between 12,000 to 24,000 tons per year (Carson, 2013). In the Eastern Ionian Sea, 

Anastasopoulou et al. (2013) found that 86.5% of foreign material ingested by fishes was plastic. 

This included and assortment of plastic from both land- and marine-based sources, including 

hard materials, plastic bag fragments, fishing gear, and fibers from textiles. Although the types of 
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plastics consumed are dependent on particle size and location, Choy and Drazen et al. (2013) 

found that pelagic predatory fish consume fishing line more than any other type of debris.  

Prior to research focused on isolating and enumerating plastics from digestive systems, 

plastic items were more frequently reported as miscellaneous items during diet studies. Bass et 

al. (1973) described spherical 1 mm plastic beads and 30 mm fine plastic sheets ingested by 

carcharhinid sharks on the east coast of Southern Africa, whereas Cliff and Dudley (1991) 

reported bull sharks (Carcharhinus leucas) as having ingested plastic, without providing any 

sizes or additional descriptors (Cliff and Dudley, 1991). In a 23-year study between 1978 and 

2000 of stomach contents from 15,666 sharks caught in gillnets off of the coast of South Africa, 

Cliff et al. (2002) found 60 individuals as having ingested plastic, with 48% classified as plastic 

bag materials. Sampaio et al. (2018) reported that a stranded juvenile whale shark (Rhincodon 

typus) in Northeast Brazil was found to have ingested plastic packing materials, a fragmented 

cotton swab, and additional plastic debris.  

 

CHARACTERIZATION OF MICROPLASTICS 

Plastics are classified by size as macroplastics (> 200 mm), followed by mesoplastics (5 

– 200 mm), microplastics (0.001 – 4.99 mm), and nanoplastics (< .001 mm) (Arthur et al., 2009; 

Eriksen et al., 2014, Gigault et al., 2018). Microplastics are further subdivided into primary and 

secondary types. Primary microplastics are those intentionally manufactured to < 5 mm, such as 

microbeads in cosmetic and personal care products. Secondary microplastics, often collectively 

referred to as fragments, result from larger plastic objects breaking apart (due to physical 

processes such as biofouling and weathering), increasing the number of plastic particles even if 

inputs ceased (Cole, 2011). Microplastics can be further characterized based on shape and color, 

either at time of production or once having fragmented in the environment.  
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Shape and Color of Microplastics 

The shape of microplastics can be classified into four categories, including films, 

fragments, fibers, or pellets, as identified in Figure 1. Plastics can also be distinguished based on 

a combination of a unique appearance, texture, and reaction to heat (Ladewig et al., 2018). For 

example, films and fibers are flexible compared to fragments and pellets, which probing reveal 

as hard. In further categorizing fragments, Hidalgo-Ruz et al., (2012) attributed fragment shape 

(e.g., round vs angular) as evidence of how recently the particle had broken off from its original 

source (i.e., rounder fragments would have likely been exposed to additional environmental 

degradation causing smoothing). Microfibers from textiles (i.e., plastic strands dislodging from 

clothing during washing cycles) appear elongated and uniform in length, although fraying may 

occur (Mato et al., 2001; Ladewig et al., 2018).  

Color identification of ingested microplastics can aid in determining whether the plastic 

was intentionally or unintentionally ingested. Specific colors may lead to intentional targeting by 

an organism where plastics share similar sizes and colors of prey. Choy and Drazen et al. (2013) 

found that the longnose lancetfish, Alepisaurus ferox, favored white and clear plastic pieces. 

Since the diet of A. ferox includes hyperiid amphipods, salps, and siphonophores, which are 

white and translucent, similarly-colored plastics may have been mistakenly ingested (Bowman et 

al., 2000). In a similar case, 79% of microplastics ingested by the omnivorous fish Girella 

laevifrons were red in coloration, which was attributed to it likely targeting one of its major food 

sources, red algae (Mizraji et al.,2017). However, nontargeted ingestion also may occur while 

not actively foraging, particularly in areas with increased industrial development (Desforges et 

al., 2015). For example, Dantas et al. (2012) examined the ingestion of nylon fragments in 

estuarine drums, Stellifer brasiliensis and Stellifer stellifer, detecting only blue fragments. These 
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findings were attributed to the blue polyfilament nylon ropes used by fisheries near the study 

site.  

 

Distribution and Toxicity of Microplastics  

Carpenter et al. (1972) discussed the presence of microplastics in the western Sargasso 

Sea as brittle pellets in masses of 3,500 pieces per km
2
. In the last decade, the concern and 

attention dedicated to microplastics found in organisms and the environment has greatly 

increased (Jamieson et al., 2019). Microplastics have now been recorded in extreme 

environments such as the Arctic Basin and the Mariana Trench (Kanhai et al., 2018; Jamieson et 

al., 2019).  

Research on microplastic consumption has been conducted on a range of organisms 

including marine mammals, sea birds, fishes, and invertebrates (Fossi et al., 2014; Tanaka et al., 

2013; Dantas et al., 2012; Jang et al., 2016). Farrell and Nelson (2013) demonstrated the trophic 

transfer of microplastics from mussels to crabs, and Gutow et al. (2015) found that microplastics 

adhering to the surface of seaweed were consumed by marine snails. This phenomenon of 

trophic level transfer has the potential to occur throughout the food web (Figure 2). The 

consequences of this trophic level transfer include that plastic particles can be physically 

transferred between individuals, and also that microplastics may serve to transport toxins (Farrell 

and Nelson, 2013; Fossi et al., 2014). 

The toxicity of microplastics can be attributed to two different causes. The first is toxic 

additives that are part of the production process of plastics (Teuten et al., 2009). The second 

occurs when nonpolar chemicals in pollutants are adsorbed onto plastics due to the affinity of the 

chemicals for the nonpolar surface of the plastics. For example, Mato et al. (2001) demonstrated 

that plastic resin pellets adsorb polychlorinated biphenyls (PCBs) and dichloro-diphenyl-
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dichloroethylene (DDE) from surrounding seawater, acting as a mechanism to absorb toxins. 

DDE is a major degradant of dichloro-diphenyl-trichloroethane (DDT) and is considered a 

probable human carcinogen by the Environmental Protection Agency (EPA) (National 

Toxicology Program, 2016). DDE and PCBs leach into the tissues of an organism if consumed, 

as both are readily fat-soluble (Fossi et al., 2014).  

The toxic effect of chemical exposure via microplastics has been shown in invertebrates, 

birds, fish, and marine mammals (Jang et al., 2016; Tanaka et al., 2013; Fossi et al., 2014). Jang 

et al. (2016) identified the presence of expanded polystyrene (styrofoam) particles in mussels 

and the associated levels of a brominated flame retardant, hexabromocyclododecanes (HBCDs) 

in their tissues. The main concern with HBCDs in mussel tissues is that they a persistent organic 

pollutant (POP) with a tendency to bioaccumulate (Jang et al., 2016). Tanaka et al., (2013) also 

found polybrominated diphenyl ethers (PBDEs) in the system of the short-tailed shearwaters, 

Puffinus tenuirostris, in addition to microplastics in their digestive systems.  Fossi et al. (2014) 

found organochlorine compounds and phthalates (chemicals used to soften rigid plastics) had 

leached from microplastics in the basking shark, Cetorhinus maximus, and the Mediterranean fin 

whale, Balaenoptera physalus. Phthalates leach from plastics, the most abundant being di-(2-

ethylhexyl) phthalate (DEHP).  

 

INGESTION OF MICROPLASTICS IN SHARKS 

Currently, nine species of sharks have been documented as having consumed 

microplastics. In R. typus, skin biopsies showed chemical evidence of microplastic ingestion 

(Fossi et al., 2017). Blue sharks (Prionace glauca), spiny dogfish, blackmouth catshark (Galeus 

melastomus), Portuguese dogfish (Centroscymnus coelolepis), velvet belly lanternshark 

(Etmopterus spinax), and longnose spurdog (Squalus blainville) have also been reported to have 
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consumed microplastics (Bernardini et al., 2018; Avio et al., 2015; Alomar and Deudero, 2017; 

Cartes et al., 2016; Anastasopoulou et al., 2013). 

 

BIOLOGY OF THE ATLANTIC SHARPNOSE SHARK  

R. terraenovae is small carcharhinid shark found along the east coast of North America 

and in the Gulf of Mexico, and is currently a species of least concern according to the 

International Union for Conservation of Nature and Natural Resources (IUCN) (Cortés, 2009). It 

is consumed by humans, and NOAA currently lists United States wild-caught Atlantic sharpnose 

shark as a smart seafood choice due to its life history characteristics (including its high 

reproductive potential) and its sustainable management (NOAA Fisheries, 2017).  Females reach 

a maximum total length of 107 cm, maturing between 2.8 to 3.9 years old at 85-90 cm. Males 

tend to reach a maximum total length of 105 cm, maturing between 2.4 to 3.5 years at a length 

between 80-85 cm (Parsons, 1985). In northwestern Atlantic sharpnose shark populations, 64% 

of the diet consisted of teleosts, followed by 34% crustaceans (Gelsleichter et al., 1999). In 

samples collected near Cape Hatteras, North Carolina, Bowman et al. (2000) found 80% of the 

R. terraenovae diet to be fish, followed by 9.7% crustaceans. In coastal Florida waters, mature R. 

terraenovae consumed 71.4% sciaenids (Bethea et al., 2006).  

R. terraenovae was selected as the study species because it is a locally abundant 

mesopredatory shark of least concern and, as such, it serves as a model organism in Winyah Bay, 

SC in providing a baseline for ingestion of microplastics for other tertiary and quaternary 

consumers. This holds importance given that Winyah Bay provides habitat for endangered 

species including the shortnose sturgeon (Acipenser brevirostrum) and vulnerable species such 

as the sandbar shark (Carcharhinus plumbeus) (Kynard et al., 2016; Collatos, 2018; Musick et 

al., 2009). Furthermore, three studies have examined the presence of microplastics in Winyah 
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Bay, including ongoing research by Drs. George Boneillo and Jane Guentzel at Coastal Carolina 

University, a comparative study of Charleston Harbor and Winyah Bay by Gray et al. (2018), 

and an examination of microplastics in the water column and sediments of Winyah Bay by 

Ladewig et al. (2018).  

The primary objective of this study was to isolate, identify, quantify, and characterize 

microplastics in the digestive systems of R. terraenovae, and compare these to published values 

for other sharks.  

 

METHODS 

SAMPLE COLLECTION 

Sixteen mature male R. terraenovae were obtained during May and July 2018 from 

experimental longlines using 16/0 and 18/0 circle hooks targeting sandbar sharks, lemon sharks, 

and bull sharks for Coastal Carolina University’s Shark Project (Abel et al., 2007). Longlines 

baited with Boston mackerel and ladyfish were set for one hour. R. terraenovae specimens that 

were moribund or dead on retrieval were initially placed on ice for transport and kept frozen until 

the time of dissection (Avio et al., 2015). 

 

CONTAMINATION PROTOCOL 

During each step of the procedure, working surfaces and materials were cleaned with 

alcohol prior to introduction of samples. Additionally, 100% cotton laboratory coats were worn 

to prevent microfiber contamination (Bellas et al., 2016). Hypersaline and hydrogen peroxide 

solutions were filtered using a 0.45 μm filter to prevent contamination by microplastics already 

present (Avio et al., 2015). All filtering was completed under a vacuum hood to prevent 

additional contamination. In order to detect any atmospheric contamination within the hood, a 
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borosilicate glass petri dish with 3 ml of distilled water was placed next to the isolation sites and 

examined for presence of plastics upon completing the protocol (Bellas et al., 2016). 

 

INITIAL ASSESSMENT AND DISSECTION 

Prior to dissection, each shark was thawed to room temperature, and sex, total length, 

weight, and maturity stage (based on length of the animal and clasper development) were 

recorded. A ventral lengthwise incision was made from the cloacal opening to posterior of the 

coracoid bar to expose the abdominal cavity (Figure 3). The intact liver was removed first, 

weighed, and examined under a binocular dissecting microscope to note and photograph any 

surface abnormalities. Following removal of the liver, the intestinal tract and stomach were 

removed from the esophagus posterior to the mesentery located anterior of the rectal gland. After 

removal, the digestive tracts from each specimen were stored in a foil tray with a foil cover and 

labeled RTM1 through RTM16. Stomach fullness (excluding any consumed bait) was 

categorized by following an empirical five stage scale, as; (1) empty stomach, (2) low content, 

(3) middle amount, (4) high content, and (5) full stomach (Anastasopoulou et al., 2013). The 

surfaces of the cardiac stomach, pyloric stomach and intestine were then examined for 

abnormalities and preliminary evidence of microplastics using a binocular dissecting microscope 

at a magnification of 40x. Once the surface tissues had been examined, a lengthwise incision was 

made to open the stomach to examine the contents. The intestine in this species is a scroll type as 

seen in Figure 3 and was unrolled to reveal contents (Bianchi, 1999). Any visible whole prey 

items were photographed and classified to the lowest possible taxon (Anastasopoulou et al., 

2013).  

 

FILTRATION AND PARTIAL DIGESTION OF THE DIGESTIVE SYSTEM 
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Our protocol followed that of Avio et al. (2015), the most efficient of six published 

protocols for extracting plastics from fish stomachs with an estimated plastic recovery yield of 

over 90%. For each of the sixteen samples, the stomach, stomach contents, and intestinal tract 

were combined in a single foil container with a 200 ml NaCl hypersaline solution (1.2 g/ml). 

Samples were stirred for ten minutes and decanted. This initial process was performed twice 

prior to moving remaining solid material to 15% H2O2 solution in borosilicate glass petri dishes. 

Samples were then dried in an oven at 50°C for eight hours (Avio et al., 2015). This process 

bleached and dried the remaining tissues and allowed for better visibility of fibers during 

subsequent examination. The liquid separated during the decanting process was vacuum-filtered 

using six 47 mm, gridded, cellulose-nitrate filters with a 0.45 µm pore size (GF/B, Whatman, 

USA). Filters were next dried in order to perform the hot needle test to confirm the material as 

plastic (Barrows et al., 2017; Devriese et al., 2015). The hot needle test uses a heated dissection 

needle to distinguish between microplastics, which tend to curl or melt in the presence of heat, 

and biological material, which does not. 

 

CATEGORIZATION OF PLASTICS 

A binocular dissecting microscope at a magnification of 40x was used to view the filters 

and the remaining tissues for presence of any plastic materials (Miranda et al., 2016). A length 

estimate, as well as the shape, and the color were recorded for each plastic. Measurements were 

taken by photographing each microplastic, then digitally scaling each using FIJI Image J 

software to provide an accurate measurement. The shape of each plastic was classified as a film, 

fiber, pellet, or fragment (Figure 1), and the color of each plastic was categorized under the 

standard Red-Yellow-Blue color model. Images and data were then analyzed for duplicates 

found in individuals between the in situ visual analysis (performed on intact digestive tract prior 
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to the decantation) and the filtration analysis (performed on separated liquids and tissues) by 

comparing and matching photographs based on shape, length, and color. 

 

DATA ANALYSIS 

Hepatosomatic Indices (HSI) 

The hepatosomatic index of each specimen was calculated using a ratio of the liver 

weight to the total weight of the individual (Hussey, 2009).  In Equation 1, MTL represents the 

total body mass of the lobes of the liver and MTB represents the total body mass of each 

individual. 

    HSI = [MTL (kg)/ MTB (kg)] x 100   (1) 

 

Condition Factor (CF) 

Condition factor serves as a general health indicator as the total body weight as a function 

of total body length of the individual (Hussey, 2009). In Equation 2, MTB represents the total 

body mass of each individual, and PCL represents the precaudal length    

    CF = [MTB (kg)/ PCL (cm)3] x 105    (2) 

Statistical Analyses 

Using IBM SPSS Statistics Version 25, ANOVA single factor tests were run to test for 

significant differences within the thirteen different color groupings, within the four different 

shapes, and among the six different size classes. When significant, the ANOVA followed by 

post-hoc analysis Tukey test (α-level = 0.05) was used to determine which groups differed 

significantly.  
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RESULTS 

MICROPLASTIC ABUNDANCE 

Microplastics were detected in 100% of samples (n=16), with the frequency ranging from 

34 to 75 particles per individual (Table 1). Of the 997 particles isolated from in situ visual and 

filtration analyses, on the basis of the hot needle test 17 were deemed sediment or biological 

material (e.g., plant material, fish scales, and fish lenses), and 53 were identified as duplicates. 

The duplicates, sediment, and biological material were then subtracted from the total count, 

leaving 927 microplastics among the sixteen individuals. Atmospheric contamination in the 

vacuum fume hood was minimal, with 2 to 6 particles per dish for the 10 petri dishes examined, 

which were not subtracted from the final count.   

 

DISTRIBUTION OF MICROPLASTICS BY SHAPE 

The most common shapes of microplastics in R. terraenovae were fibers (93.6%), and 

fragments (5.7%), followed by films (0.5%) and pellets (0.1%) (Figure 4). For every individual, 

fibers were also dominant (Figure 5). There were statistical differences in microplastic shape 

(ANOVA; R2 = 0.948; df = 3, 60; F = 367.66; P < 0.001) with differences between the subgroup 

of pellets, films, and fragments, and the subgroup of fibers (Tukey post-hoc test; Table 2).   

 

DISTRIBUTION OF MICROPLASTICS BY SIZE 

The range of microplastic length was 0.024 to 17.260 mm, with a mean length of 1.211 ± 

1.358 mm (SD).  The majority (55%) of the particles were in the smallest size class (< 1.0 mm) 

(Figures 6 & 7). There were statistical differences in microplastic size classes (ANOVA; R2 = 

0.846; df = 5, 90; F = 98.76; P < 0.001) with subgroups of size classes less than 1 mm, 1 to 2 
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mm, and together one subgroup including classes 3 to 4 mm, 4 to 5 mm, and greater than 5 mm 

(Tukey post-hoc test; Table 3). 

 

DISTRIBUTION OF MICROPLASTICS BY COLOR 

The predominant color detected was blue (41%), followed by clear (22%), black (15%), 

and gray (9%), with the other nine colors forming a combined 13% of the total microplastics 

(Figures 8 & 9). There were statistical differences in color (ANOVA; R2=0.799; df= 12, 195; F= 

64.79; P < 0.001) with statistically significant subgroups (Tukey post-hoc test; Table 4). The in 

situ visual analysis yielded 40% blue, 29% black and 14% gray particles, with 17% of the 

plastics comprising the ten other color groups (Figure 10). In contrast, post-filtration analysis 

yielded 46% blue particles, 30% clear, 7% gray and 7% black, with seven colors making up the 

other 10% of the color distribution (as no brown or white particles were found during the post-

filtration analysis. (Figure 10).  

 

HEALTH INDICATORS  

Hepatosomatic indices ranged from 2.53 to 6.56, with a mean index of 3.9 ± 1.1 (SD), 

with no correlation between the number of microplastic particles and the HSI (R2 = 0.025). 

Condition factor ranged from 0.52 to 0.85, with a mean index of 0.61 ± 0.08 (SD), with no 

correlation between the number of microplastic particles and the CF (R2 = 0.004).  

 

STOMACH FULLNESS 

The range of stomach fullness was from 1 (no contents) to 5 (full stomach) with a mean 

fullness of 2.25 ± 1.34 (SD). A weak positive linear relationship (R2 = 0.248) occurred between 

increasing particle number and increasing stomach fullness.  
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SUBSURFACE MICROFIBERS 

During the in situ visual analysis, microplastics were found below the stomach serosa 

(outermost layer of the stomach lining) in the muscularis propria in 19% (n=3) of sharks (Figure 

11). Of the total 927 particles isolated, 3 were embedded into this stomach lining.  

 

DISCUSSION 

This study provides the first documentation and categorization of microplastics in the 

Atlantic sharpnose shark Rhizoprionodon terraenovae in a southeast United States estuary, and 

adds to the growing list of sharks in which microplastics have been found (Bernardini et al., 

2018; Avio et al., 2015; Alomar and Deudero, 2017; Cartes et al., 2016; Anastasopoulou et al., 

2013; Fossi et al., 2014). Major findings include quantification of microplastics, categorization 

by shape, size, and color, and the first evidence of a potential pathway for translocation of 

microplastics from the stomach contents to the external surface of the stomach.  

 

MICROPLASTICS ABUNDANCE 

The mean number of microplastic particles found in this study per individual was 57.93 ± 

11.71 (SD), with a maximum of 75 particles per shark. This is the highest reported average of 

particles and frequency of microplastic ingestion among existing literature on microplastics 

ingested by sharks (Table 1). However, of these only Avio et al. (2015) performed the same 

protocol as we used, that is, initial visual analysis and vacuum filtration followed by a partial 

digestion of remaining tissues. Avio et al. (2015) reported 44% of 9 examined S. acanthias in the 

Adriatic Sea with an average of 1.25 ± 0.5 ingested microplastics per individual, although fibers 

were not counted (to eliminate those contributed from atmospheric contamination). As such, 

variation in protocols and the exclusion of fibers may explain the high microplastic abundance in 
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this study compared to other shark studies (Fossi et al., 2018, Bernardini et al., 2018). These 

studies examined only the stomach or the stomach contents as opposed to the entirety of the 

digestive tract, and used different means to isolate plastics. For example, Miranda et al. (2016) 

reported a maximum of 3 plastic pellets per individual in Brazilian sharpnose sharks, however 

the protocol varied from our study in that it only included a visual analysis examining the 

stomach contents. Bernardini et al. (2018) found 25.26% of 95 blue sharks consumed 

microplastics in the North Western Mediterranean Sea, with a range of 1 to 30 plastic items 

ingested per individual.  

Whether the microplastics we found in R. terraenovae were derived from local estuarine 

or more distant pelagic waters cannot be discerned, since the species is highly migratory and is 

not a year-long resident of Winyah Bay. 

Small teleost fishes are the main prey of R. terraenovae, therefore biomagnification of 

plastics could occur via their consumption (Gelsleichter et al., 1999, Ferreira et al., 2019). In 

Charleston Harbor, SC, seven species of teleosts were found to have ingested an average of 13 

microplastics per individual, as identified through the use of fluorescence and bright-field 

microscopy in (Payton, 2016). This average is higher than those found in the Northeast Atlantic, 

where among seven species, 73% of 233 teleosts had consumed microplastics, with an average of 

1.8 ingested particles per individual (Wieczorek et al., 2018). In comparison to other estuarine 

systems, in the Mondego estuary in Portugal, three teleosts had consumed an average of 1.67 ± 

0.27 (SD) microplastics per individual (Bessa et al., 2018). In the Goiana Estuary in Brazil, the 

common snook, Centropomus undecimalis, consumed a maximum of 3.66 ± 1.20 ingested 

particles per individual (Ferreira et al., 2019).  

 

WINYAH BAY, SC 
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As stated above, the geographical source of the microplastics found in our study species 

cannot be known with certaintly. However, the dominant shape (fiber), size class (< 1 mm), and 

color (blue) of plastics found in the digestive tracts of R. terraenovae are consistent with their 

proportional presence reported by Ladewig et al. 2018 in Winyah Bay. Although Ladewig et al. 

(2018) found fibers and blue particles dominant, this contrasts with the findings of Gray et al. 

(2018) in which the dominant color found in Winyah Bay was black, and the dominant shapes 

were fragments. Ladewig et al. (2018) attributed this disparity to the black fragments (likely 

from tires) possibly having a lower density than the surface microlayer (the top 1 mm boundary 

layer interacting with the atmosphere) which was sampled in the study by Gray et al. (2018).  

 

DISTRIBUTION OF MICROPLASTICS BY SHAPE AND COLOR 

The results of microfibers as the dominant shape are also in agreement with Desforges et 

al. (2014) and Desforges et al. (2015) in which zooplankton located in inshore regions had 

consumed more fibers than zooplankton had consumed in offshore regions. Desforges et al. 

(2014) attributed this fiber distribution to fishing, recreational boating, and wastewater effluent. 

However, these findings are also consistent with research in the Atlantic Ocean, the Mariana 

Trench, and in the Arctic Basin, suggesting that a higher proportion of fibers is not restricted to 

nearshore regions (Kanhai et al., 2017; Jamieson et al., 2019; Kanhai et al., 2018). In previous 

shark studies, sheet-like particles (classified as film in our study) comprised 72.4% of plastic 

particles consumed by blue sharks, with only 3.8% of particles classified as threadlike 

(categorized as fibers in our study) (Bernardini et al., 2018). In spiny dogfish, 57% of particles 

found were fragments, however fibers were not included in this study (Avio et al., 2015).Color 

also varied between previous shark studies, such as in the blue shark, in which transparent and 

white were the most common colors found (Bernardini et al., 2018).  
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SUBSURFACE MICROFIBERS 

Microfibers have not been previously reported as being embedded within the layers of the 

stomach lining in fish. This finding is significant in that it suggests that the exterior surfaces of 

the organs be systematically and microscopically examined and provides evidence for a pathway 

for translocation of ingested fibers and microplastics from the lumen of the digestive tract to the 

external surface. Our finding carries implications for future studies where the entirety of the 

digestive system is chemically digested prior to examination, or only the stomach contents are 

examined. In either case, critical information regarding a plastic’s location within an organism’s 

system could be overlooked. Embedded microfibers cause a longer duration of plastic (and 

potentially chemical) exposure to an organism’ system in contrast to the shorter duration of 

microplastics passing through the digestive tract.  

The fate of ingested plastics is either elimination in feces, stomach or intestinal eversions, 

or retention either adhered to the linings or translocated (Christie, 2012, Brunnschweiler, 2005; 

Avio et al., 2015). The deposition of microplastics in fecal matter has been demonstrated in 

laboratory setting in the copepod Centropages typicus, isopod Idotea emarginata, and the 

periwinkle Littorina littorea (Hämer et al., 2014; Gutow et al., 2015). Though possible, field 

studies of fish fecal content present more challenges than those performed in a laboratory setting 

such as faster dispersion in the water column (Wetherbee and Gruber, 1990; Saba et al., 2012). 

Determining the amount of microplastics retained in the tissues of an animal versus the amount 

entirely passing through the system will be critical in determining the range of potential impact 

of microplastics, particularly in regards to toxicity. 

In consuming non-digestible items, sharks have been observed performing stomach and 

intestinal eversions that remove inedible objects from their systems (Christie, 2012; 

Brunnschweiler, 2005). In one unique case, a lemon shark was observed over the course of a 
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year with a metal fish stringer expelled from within the body cavity through the body wall 

(Kessel et al., 2017), supporting the possibility of other mechanisms for sharks to expel foreign 

objects from their stomachs.  

Three possible mechanisms for translocation of microplastics include (i) stomach 

expansion and contraction, (ii) pressure on the coelom, and (iii) movement through existing 

pathways.  

(i) Stomach Expansion and Contraction: During feeding, the stomach of vertebrates, 

including sharks, expands to accommodate larger meals, a phenomenon called receptive 

relaxation (Holmgren and Nilsson, 1999). The first stages of digestion occur in the stomach, 

principally the release of concentrated hydrochloric acid, which activates the enzyme pepsin for 

digestion of proteins (Papastamatiou and Lowe, 2005). To ensure that sufficient mixing of these 

digestive chemicals occurs, the smooth muscle of the stomach wall rhythmically alternate 

between inactivity and strong contractions (Holmgren and Nilsson, 1999). Microfibers may 

contact the stomach wall at any time during their presence in the stomach, but it is during this 

mixing process that microfibers have a higher likelihood of penetrating into the tissues, either 

pushed by harder stomach contents (e.g., whole fish, crab shells) or by the contact between rugae 

folds. Repeated contraction could lead to these microfibers becoming more deeply embedded in 

the stomach lining and possibly translocating to the exterior surface of the stomach. 

ii.)  Pressure on Coelom: Pressure on the abdominal cavity during normal swimming 

activity could create a similar situation of compression of the stomach leading to the lodging of 

microfibers in the stomach lining. Natural changes in pressure on the coelom could occur 

particularly in sharks with anguilliform and carangiform swimming types, due to the contraction 

of locomotory muscles and resulting tightening of skin (Wainwright et al., 1978). 



  

 

18 

 

iii.) Movement Through Existing Pathways: Small tears and punctures may occur within 

the stomach lining due to both natural and unnatural stomach contents, and possibly through 

other existing channels, such as those created by parasites. Sharks stomachs are known to have a 

variety of parasites including nematodes, trematodes and cestodes (Heupel and Bennett, 1998; 

Fyfe, 1953; Dailey and Vogelbein, 1982). During this study, nematodes were observed in the 

same sub-serosal layer as the microfibers. Although the uptake of nanoplastics have been shown 

in the nematode Caenorhabditis elegans, the possibility of parasitic transport of microfibers is 

still unknown (Kim et al., 2019). However, the channels created by their movement through the 

stomach lining could provide a pathway for a microfiber to become lodged into the tissues. 

 

HEALTH INDICATORS  

There were no significant correlations between the number of microplastics and either of 

the shark health indicators tested. HSI is considered to be a more accurate health indicator for 

short term effects whereas CF is typically considered for long term health (Hussey, 2009). 

Mizraji et al., (2017) found a decline in condition factor with increased plastic consumption by 

the omnivorous fish Girella laevifrons. Foekema et al. (2013) also found a negative relationship 

between condition factor and the presence of microplastics in the haddock, Melanogrammus 

aeglefinus, however this only represented one out of five species examined in the North Sea, (the 

other four had no significant relationship between plastic ingestion and condition factor). 

Regarding the hepatosomatic index, Lu et al. (2016) showed that microplastic exposure was 

correlated to liver inflammation and accumulation of lipids in the livers of zebrafish, Danio 

rerio. Although our study did not show a strong correlation between plastic accumulation and 

either of the health indices analyzed, negative impacts from microplastics could be potentially 

detected through analyzing toxins.  
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STOMACH FULLNESS 

Although Alomar and Deudero (2017) found a positive correlation between stomach 

fullness and the amount of microplastics consumed, there was no strong correlation between 

these factors in R. terraenovae. This could be attributed to a smaller sample size of R. 

terraenovae N=16 as opposed to the N=125 of the blackmouth catshark (Alomar and Deudero, 

2017). However, in seven species of teleosts in the Northwest Atlantic, Wieczorek et al., 2018 

found no significance between the amount of ingested microplastics and stomach fullness. It is 

also important to note that obtaining samples via baited longlines likely contributed to the mean 

stomach fullness of 2.25, (low content), as sharks with fuller stomachs may be less likely to 

target bait.  

 

LIMITATIONS AND FUTURE DIRECTIONS 

This study provides an initial baseline of microplastic ingestion by adult, male R. 

terraenovae, though future studies of microplastic ingestion by R. terraenovae in Winyah Bay 

could include an examination of changes undergone by ingested plastics, examining polymer 

type, estimations of microplastic consumption by other species of Winyah Bay, and examining 

additional R. terraenovae samples.  

 The effect stomach acid on various types of plastic may cause alterations to the 

composition of the plastic (Haetrakul et al., 2009). As the stomach acid in sharks is extremely 

variable between species and ranges widely within an individual based on foraging activity, the 

exact effect of stomach acid on plastics within the digestive tract is still unknown (Holmgren and 

Nilsson 1999). In an actively foraging species, empty stomachs of the leopard shark (Triakis 

semifasciata) had a pH of 1.5 ± 1.4 (SD) and increased to 3.1 ± 0.7 (SD) after feeding 

(Papastamatiou and Lowe, 2004). A less active species, the nurse shark (Ginglymostoma 
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cirratum) had a stomach acid pH range of 0.4 immediately after feeding to 8.7 three days after 

feeding (Papastamatiou and Lowe, 2005). Gastric acid exposure should be considered as a factor 

impacting the composition of ingested plastics, as demonstrated in a 2009 study in which a 

plastic straw became fatal when consumed by a whale shark by causing lacerations and 

hemorrhaging in the stomach (Haetrakul et al., 2009). The straw which had been produced as 

flexible and clear had undergone a physicochemical change in the stomach and had become 

hardened and opaque. This physical change into a hard structure is what ultimately caused the 

internal lacerations.  This phenomenon should be considered on the scale of microplastics as 

well, which may undergo similar changes when encountering acids. The implications of this 

reaction apply to both changes occurring due to stomach acid exposure, and changes due to 

intentional chemical exposure during laboratory procedures.  

Future studies could also be improved by using Fourier transform infrared spectroscopy 

(FTIR), which is currently considered one of the most optimal methods for identifying polymer 

type (Jung et al., 2018). As the initial polymer structure will impact the transfer of chemical 

pollutants to an organism due to different degrees of adsorption, this could be a critical step in 

determining the impact of plastic consumption.  

In order to gain a more comprehensive understanding of microplastic distribution within 

organisms in Winyah Bay, a future study could encompass examining organisms at other trophic 

levels, including prey items of R. terraenovae as well as predators. Sample prey items of R. 

terraenovae found within Winyah Bay include the Atlantic menhaden Brevoortia tyrannus, the 

broad striped anchovy Anchoa hepsetus, and the Atlantic silverside Menidia menidia. Predators 

of R. terraenovae in Winyah Bay include apex predators such as the lemon shark Negaprion 

brevirostris, and the bull shark Carcharhinus leucas. Information on the microplastic distribution 

in these species as well as other residents of Winyah Bay would help to expand the current 
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knowledge of the scope of microplastic ingestion in an estuarine environment. However, 

measuring the degree of trophic level transfer of plastics in a field setting remains difficult due to 

factors such as unintentional ingestion of microplastics from the water column (Dantas, 2012). 

Another consideration is that this study included only males, which can be attributed to 

sexual segregation of the sharpnose sharks. Sexual segregation due to foraging or social reasons 

in sharks is not infrequent, and has been demonstrated in at least 38 species of sharks (Mucientes 

et al., 2009; Sims, 2005). In the north central Gulf of Mexico, Parsons (2005) caught only 9 

female Atlantic sharpnose sharks in comparison to 718 adult males, postulating that it is 

uncommon for females to enter shallow waters after maturation. Although foraging and habitat 

differences would likely be the driving factors in varying microplastic consumption frequencies, 

no significant differences were found between female and male consumption of microplastics in 

the blue shark (Bernardini, et al., 2018). A comparison between male and female consumption of 

microplastics in R. terraenovae could support whether or not this is the case in other sharks.  

Additionally, only adult R. terraenovae were examined in this study, but samples at 

various life stages would allow for a better understanding of the magnitude of microplastics 

being introduced throughout their life span. Plastic ingestion studies on short-tailed shearwaters, 

harbor seals, Franciscana dolphins, four species of sea turtles, and blue sharks have supported 

that juveniles tend to consume more plastic items than adults (Acampora et al., 2014; Rebolledo 

et al., 2013; Denuncio et al., 2011; Plotkin and Amos 1990). In blue sharks, Bernardini et al. 

(2018) attributed a higher frequency of plastic ingestion to the opportunistic feeding style of 

juveniles, whereas Plotkin and Amos (1990) attributed this disparity to juvenile sea turtles 

foraging mainly on drift lines (which tend to have higher amounts of debris). Both differences in 

habitats and foraging techniques could lead to a higher consumption rate of plastics by juveniles. 

A total count of plastics accompanied by the utilization of a nonlethal biomarker would enable 
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the formulation of a baseline correlation between the presence of microplastics and the 

subsequent leaching of toxins in sharks.  

 

CONCLUSION 

Plastic in the ocean is expansive issue and has a spectrum of low to severe consequences 

for organisms and their habitats. The small size of microplastics allows for biomagnification and 

their high degree of adsorption furthers the bioaccumulation of toxins. This project adds to the 

growing field of microplastic research by considering a mesopredator in an estuary with 

published data on microplastic occurrence in the water column and sediment (Ladewig et al., 

2018). As this species is consumed by humans, concern may rise due to the absorption of 

probable carcinogens into the systems of other mammals (Fossi et al., 2014). Future studies 

could improve current methods by identifying the presence of microplastics in a non-lethal 

manner such as blood tests, particularly with species that have populations that are endangered.  

This study is the first to describe microfibers within the layers of the stomach lining, and 

suggests potential mechanisms for transport of microplastics from the stomach towards the 

coelom, a phenomenon that could potentially increase an organism’s length of exposure to toxins 

carried by the microplastics.  
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TABLES 

Table 1.  Comparison of the frequency of microplastic ingestion in sharks out of the total 

number of individuals sampled (N) within existing literature, grouped by species. The inclusion 

of a filtration analysis in the procedures and the inclusion of microfibers in the total count of 

microplastics within each study are indicated. Adapted from Bernardini et al., 2018. 

 

Species  N Frequency (%) Filtration 

Analysis 

Fibers 

Included 

Bibliography 

Centroscymnus coelolepis  11 9% No Yes Cartes et al., 2016 

Centrophorus granulosus  5 0% No Yes Anastasopoulou et al., 

2013 

Etmopterus spinax  16 6% No Yes Anastasopoulou et al., 

2013 

Etmopterus spinax  323 6% No Yes Deudero and Alomar, 

2015 

Etmopterus spinax  9 11% No Yes Cartes et al., 2016 

 

Galeus melastomus  741 3% No Yes Anastasopoulou et al., 

2013 

Galeus melastomus  125 16% No Yes Alomar and Deudero, 

2017 

Galeus melastomus  125 15% No Yes Cartes et al., 2016 

Prioncace glauca  95 25% Yes Yes Bernardini et al., 2018 

Rhizoprionodon lalandii  6 33% No No Miranda et al., 2016 

Rhizoprionodon terraenovae 16 100% Yes Yes Present Study 

Scyliorhinus canicula  1 0% No Yes Anastasopoulou et al., 
2013 

Squalus acanthias  16 6% Yes No Avio et al., 2015 

Squalus acanthias  323 6% No Yes Anastasopoulou et al., 

2013 

Squalus blainville 9 11% No Yes Anastasopoulou et al., 

2013 
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Table 2.  Microplastic abundance (N), mean particle length, and health indicators for each 

sample. 

Sample ID N Mean Particle Length (mm) (SD) HSI CF 

RTM1 34 1.28 (2.25) 5.81 0.56 

RTM2 67 1.18 (1.15) 6.57 0.64 

RTM3 45 1.51 (1.79) 3.09 0.52 

RTM4 45 1.57 (1.25) 3.55 0.85 

RTM5 43 2.58 (3.27) 

 

4.86 0.55 

RTM6 70 1.08 (1.06) 3.74 0.53 

RTM7 59 1.00 (1.08) 4.29 0.65 

RTM8 54 1.14 (1.29) 3.21 0.61 

RTM9 67 1.13 (0.88) 4.32 0.54 

RTM10 49 1.18 (1.11) 3.46 0.58 

RTM11 60 0.92 (0.81) 2.54 0.65 

RTM12 67 1.24 (0.98) 3.03 0.58 

RTM13 75 0.99 (1.02) 3.44 0.61 

RTM14 60 1.25 (1.19) 2.66 0.58 

RTM15 64 1.10 (1.29) 2.96 0.68 

RTM16 68 1.11 (0.90) 4.62 0.61 

 

 

 

 



  

 

25 

 

Table 3. Post-hoc analysis (Tukey test) comparing particle shape present among 

individuals. (α-level = 0.05). 

 

 

 

 

Table 4. Post-hoc analysis (Tukey test) comparing particle size present among 

individuals. (α-level = 0.05). 
 

 

 

Shape N Mean (SD) Frequency (out of n=16) Group 

Fiber 868 54.25 (10.94) 16 a 

Fragment  53 3.31 (1.66) 15 b 

Film 5 0.31 (1.48) 6 b 

Pellet 1 0.06 (.25) 4 b 

Size Class (mm) N Mean (SD) Frequency (out of n=16) Group 

<1 508 31.75 (9.93) 16 a 

1 to 2 233 14.56 (5.16) 16 b 

2 to 3 108 6.75 (6.75) 16 c 

3 to 4 39 2.44 (1.71) 15 cd 

4 to 5 20 1.25 (.86) 13 d 

>5 19 1.19 (1.23) 10 d 
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Table 5. Post-hoc analysis (Tukey test) comparing color present among individuals.  

 (α-level = 0.05). 

 

 

 

 

 

 

 

Color N Mean (SD) Frequency (out of n=16)  Group 

Yellow 3 0.19 (0.75) 1 a 

Brown  4 0.25 (1.00) 1 a 

White 5 0.31 (.70) 3 a 

Orange 6 0.38 (0.72) 4 a 

Multi 9 0.56 (0.89) 6 a 

Green 10 0.63 (0.72) 8 a 

Purple 21 1.31 (1.25) 11 ab 

Red 27 1.69 (1.62) 14 ab 

Pink 37 2.31 (1.82) 15 ab 

Gray 85 5.31 (2.94) 16 bc 

Black 137 8.56 (3.37) 16 c 

Clear 208 13.00 (8.08) 16 d 

Blue 375 23.44 (7.53) 16 e 
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FIGURES 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Four distinct shapes of microplastics, where the scale bar represents 1 mm.  
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Figure 2. The mechanisms of direct ingestion and the transfer via the food chain of plastics into 

the systems of organisms. The insets on the left represent microplastic ingestion at each trophic 

level, and the insets on the right are enlargements of the phytoplankton (bottom) and 

zooplankton (top). 
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Figure 3. Generalized ventral dissection of the Atlantic sharpnose shark to expose the digestive 

tract, with an enlargement of a cross-section of the scroll intestine (right).  
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Figure 4. Distribution of microplastic shapes during in situ visual analysis and during the post-

filtration process analyses, and corrected for biological material and duplicates. 
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Figure 5. Distribution of microplastic shapes per individual after in situ visual analysis and post-

filtration analysis, and corrected for biological material and duplicates. 
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Figure 6. Distribution of microplastics by size class after in situ visual and post-filtration 

analyses, and corrected for biological material and duplicates. 

 

0

100

200

300

400

500

600

<1 1 to 2 2 to 3 3 to 4 4 to 5 >5

N
u
m

b
er

 o
f 

P
ar

ti
cl

es

Size Class (mm)

Total Particle Size



  

 

33 

 

 
Figure 7. Distribution of microplastics lengths by individual, with size classes ranging from less 

than 1mm to greater than 5 mm, after in situ visual and post-filtration analyses, and corrected for 

biological material and duplicates. 
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Figure 8. Distribution of total microplastics as percentages after in situ visual and post-filtration 

analyses, and corrected for biological material and duplicates. 
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Figure 9. Distribution of total microplastics per individual after in situ visual and post-filtration 

analyses, and corrected for biological material and duplicates. 
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Figure 10. Distribution of microplastics as percentages by particle color, with in situ visual 

analysis (top) and post-filtration analysis (bottom). 
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Figure 11. Stomach layers of a shark, including the mucosa, submucosa, muscularis propria, and 

serosa. 
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