
Coastal Carolina University
CCU Digital Commons

Honors Theses Honors College and Center for Interdisciplinary
Studies

Spring 5-15-2010

UV Irradiation on Bacteriophage Survival
Sherri Tomlinson
Coastal Carolina University

Follow this and additional works at: https://digitalcommons.coastal.edu/honors-theses

Part of the Chemistry Commons

This Thesis is brought to you for free and open access by the Honors College and Center for Interdisciplinary Studies at CCU Digital Commons. It has
been accepted for inclusion in Honors Theses by an authorized administrator of CCU Digital Commons. For more information, please contact
commons@coastal.edu.

Recommended Citation
Tomlinson, Sherri, "UV Irradiation on Bacteriophage Survival" (2010). Honors Theses. 142.
https://digitalcommons.coastal.edu/honors-theses/142

https://digitalcommons.coastal.edu?utm_source=digitalcommons.coastal.edu%2Fhonors-theses%2F142&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.coastal.edu/honors-theses?utm_source=digitalcommons.coastal.edu%2Fhonors-theses%2F142&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.coastal.edu/honors?utm_source=digitalcommons.coastal.edu%2Fhonors-theses%2F142&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.coastal.edu/honors?utm_source=digitalcommons.coastal.edu%2Fhonors-theses%2F142&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.coastal.edu/honors-theses?utm_source=digitalcommons.coastal.edu%2Fhonors-theses%2F142&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/131?utm_source=digitalcommons.coastal.edu%2Fhonors-theses%2F142&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.coastal.edu/honors-theses/142?utm_source=digitalcommons.coastal.edu%2Fhonors-theses%2F142&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:commons@coastal.edu


 

 

 

UV Irradiation On Bacteriophage Survival 

 

2010 
 

 

By 

 

Sherri Tomlinson 

 

Chemistry 
 

 

 

       

 

Submitted in Partial Fulfillment of the 

Requirements for the Degree of Bachelor of Science 

In the Honors Program at 

Coastal Carolina University 

 

May 2010 

 

 

 

 

 

______________________   _______________________ 
Philip Whalen         Paul Richardson 

Director, Honors Program        Thesis Advisor 

 
 

 

 

           ___________________________ 

            Philip Whalen 

                     Honors 499 Professor 

 

 

 

 



1 

Abstract 

Bacteriophage is of great interest because of its potential role in controlling bacterial populations 

in our environment. UV exposure has a damaging effect on the virus decreasing lytic ability. 

This study set out to test the effects of UV radiation, in amounts comparable to local 

environmental conditions, on bacteriophage T2. The virus was placed in a Petri dish in a PBS 

medium and exposed to UV radiation at 365nm. The irradiated virus was allowed to infect E. 

coli and plated.  The plaques formed were counted to determine lytic activity of the virus with 

respect to UV irradiation.  The results showed that lytic activity decreased by about the same 

amount after 15 – 30 minutes, but after that showed a steady decrease as exposure time 

increased. 

 

Introduction 

Bacteriophages are viruses that infect bacteria.  This involves a host-specific parasitic 

relationship in which the phage uses the energy and the metabolic machinery of a bacterium to 

produce more phage.  The bacterium is eventually destroyed and the phage particles are released, 

able to infect the surrounding bacteria.   

Structurally a phage consists of a nucleic acid genome that is contained within a protein 

capsid.  Some virions (the basic viral unit) also have a lipid or a proteinaceous tail (DePaepe and 

Taddei, 2006).  Most phages are tailed and contain double-stranded DNA as their nucleic acid, 

This type belongs to the order Caudovirales, to which over 95% of known phages are classified 

(Maniloff and Ackermann, 1998).  The three main families of phage are differentiated by 

morphological characteristics.  Myoviridae phages, including many which infect members of 

Enterobacteriaceae (Goodridge et al. 2003), have double-layered contractile tails, Siphoviridae 

phages have long flexible tails and Podoviriae have short stubby tails.( Deveau et al. 2006).  

There are considerably fewer members in the ten small families of tailless phages, which are 

characterized by shape, segmentation, whether the DNA or RNA genome is double- or single-

stranded, and whether or not the phage is enveloped in a lipid coat (Kutter and Sulakvelidze, 

2004).   



2 

Bacteriophages display two possible lifecycles:  virulent or temperate.  Virulent 

bacteriophages quickly cause lysis, or cell destruction, and rapidly kill bacterial cells.  The 

timing of this action is carefully controlled, because if lysis occurs too quickly, not enough new 

phages will be produced for infecting new bacteria cells.  If too late, the phage loses an 

opportunity for infection of new host cells and further replication (Kutter and Sulakvelidze, 

2004).  Temperate viruses typically integrate their DNA into the host bacteria’s.  The prophage, 

or latent form of bacteriophage, has a circular form of the phage’s genome.  Alan Campbell 

postulated that the bacteriophage physically inserts its genome into the host genome, forming the 

circular prophage genome.  Then there is crossing over between the prophage genome and the 

circular bacterial genome (Kutter and Sulakvelidze, 2004).  This allows it to replicate at the same 

time as the bacteria (Hanlon 2007).  The phage’s genome in this state is called a prophage, and 

during this time, the bacteria may appear to be dividing in phage-free conditions (Kutter and 

Sulakvelidze, 2004).  It will remain integrated until it is induced by adverse conditions such as 

exposure to UV light and then proceed to cause lysis (Kutter and Sulakvelidze, 2004).  

One of the more studied and well-known supergroups of bacteriophage is the T7 group, 

which is made up of thirteen fully sequenced phages. In a study on T7-like phages, closely 

related phages were found in different countries, which leads to speculation that gene transfer is 

horizontal and that there is less global diversity than there is local diversity (Ceyssnes et al. 

2006).  However, another study concluded that strongly lytic phages, with a unique and well-

organized replication strategy, show less inclination to participate in horizontal gene transfer.  

This is thought to be because the lifecycle of strongly lytic phages proceeds so swiftly, that the 

tendency is to evolve largely by speciation, accumulation of point mutations and genetic 
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adaptations (Kovalyova et al. 2003).  This study uses a member of this group, the T2 

bacteriophage. 

 Bacteriophages are ubiquitous in nature and are claimed to be the most abundant living 

entities on the earth (Kutter and Sulakvelidze, 2004).  Several studies have sought to study and 

compare characteristics of bacteriophage from soil and water of various environments.  

Ashelford (2003) studied methods for finding the total number of bacteriophage in soil and found 

that in some cases, the bacteriophage population exceeded that of the bacteria.  Previous work on 

bacteriophage and virus-like particles found in soil has shown that viral adsorption to the host 

cell is influenced by the characteristics of the soil solution such as; ionic strength and 

composition, pH, the presence of dissolved organic matter and soil features such as water 

content, the presence of organic coatings, and clay and organic matter content. Also important 

are characteristics of the virus itself, such as hydrophobicity and the isoelectric point. Analysis 

revealed that there was a significant correlation between virus abundance and water content of 

the soil.  Wetland soil samples showed the most overall diversity (Williamson et al. 2005).  

Viruses and bacteria have been found to be most plentiful in moist soils that are rich in organic 

matter.  It was found that in temperate soils, the bacteria and phage populations were more 

dependent on each other.  This indicates that virus production is not a slow and steady process, 

but one that adapts quickly and responds to changes in host growth (Srinivasiah et al. 2008).   

Bacteriophage have also been isolated from water.  In a study in Hawaii, researchers 

found that viruses are greatly responsible for deaths of bacterioplankton and phytoplankton, 

indicating the major role that viruses play in a marine environment’s microbial ecosystem.  

Marine phages from Hawaii, while unique, share many similar characteristics with other phages 

isolated from marine environments (Jiang et al. 1998).  Virus populations from marine 
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environments are greatly increased (as much as 2000 times) compared to populations in wetlands 

and agricultural soils. Other studies have shown that in productive coastal environments, such as 

coastal South Carolina, double stranded DNA virus populations turn over once or twice a day 

and destroy a significant amount of bacteria (Srinivasiah et al. 2008).   

 Bacteriophages are also studied because of the myriad applications to medicine.  A recent 

study published by Merabishvili et al. (2009) helped to create a standard for phage therapy in 

human patients, with clear laboratory procedures for creating a well-defined bacteriophage 

treatment.  Patients with burn wounds received this treatment to combat bacteria commonly 

known in burn hospitals, Staphylococcus aureus and Pseudomonas aeruginosa.  The patients 

experienced no adverse effects from the treatment, while the specific interaction of the phage 

with the target bacteria, reducing infection, was confirmed using transmission electron 

microscopy.   

 Bacteriophages also hold medicinal value because of their ability to infect bacteria that 

have grown resistant to antibiotics.  In addition, for use in therapy, a phage can be engineered to 

destroy bacteria more efficiently and they can be modified to be nonreplicative, reducing the risk 

of leaving lysogenic particles in patients (Lu et al. 2009).  Antibiotics are generally ineffective 

against biofilms, a thin layer consisting of a polysaccharide film interspersed with colonies of 

bacteria. The biofilm can insulate the bacteria against the usual methods of disinfection or 

treatment regimes.  Biofilms can lead to problems with infection and contamination in medical 

and food processing settings.  In a study by Lu et al. (2007), engineered bacteriophage were seen 

to effectively remove biofilms. 

 Phage therapy is gaining popularity, but still faces problems, such as lack of clinical trials 

and the release of toxins when cells are lysed.  The specificity of each phage has both advantages 
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and disadvantages.  Phage will not infect human cells or harmless bacteria, but to create a 

treatment, the bacteriophage will have to be genetically engineered for specific situations (Lu et 

al. 2007). 

 There are several typical methods for characterizing bacteriophage.  First, the phage spot 

test on bacterial lawns of different strains allows for the selection of the phage infecting the most 

strains of a particular type of bacteriophage.  The morphology of the phage is another common 

method, involving the use of transmission electron microscopy.  The size of the genome can be 

used as well, determined through application of restriction enzymes.  Last, SDS-PAGE can be 

used to analyze protein composition (Sillankorva et al., 2008).  Phages can also be classified 

based on the conservation of gene arrangement, but the phage must be completely sequenced for 

this (Kovalyova and Kropinski, 2003). 

The biggest challenge in studying phage is understanding the replication of the virus’s 

genetic material.  Many studies use UV to study phage reproduction because evidence suggests it 

is closely linked with this process (Bowen, 1953).  Some studies see survival of phages after 

exposure to UV as an indication that a mechanism of biological repair has been activated and 

carried out (Chiange and Harm, 1974).  Other studies have used UV to look at the enzyme-

substrate complex and reaction rates in reactions involving phage DNA (Evdokimov et al., 

2007).  In addition to this useful aspect, UV can also be used to show what effect stress has on 

phage growth.  Phage found in the environment is not likely to be growing under the optimal 

conditions that can be found in a lab (Ellis and Delbruck, 1939).  Because of stress, phage may 

have less impact on bacterial populations and more trouble replicating.  Using UV is one way to 

look at phage under stressful conditions.  We will be looking at the effect that differing amounts 

of UV radiation has on phages.  That is, we will expose phage for varying lengths of time to UV 
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radiation and allow it to infect bacteria, comparing the amount of bacteria the phage can destroy 

to the amount of bacteria destroyed when unexposed phage is used.  After determining what 

assay works best to show the reduction of phage and at what concentration the effect is best 

viewed, the study can move into gel electrophoresis of proteins in UV-damaged bacteriophage. 

Methods 

Commercially bought phage was diluted using PBS to concentrations of 10
-3

, 10
-4

, 10
-5

, 

and 10
-6

.  Sample trials suggested the most effective results would be seen at 10
-3

, so all future 

trials were run at that concentration.  Four 100-ul drops of virus were placed close together on an 

empty Petri dish and placed under the UV lamp.  The long wave filter was selected (365 nm), 

and every 15 minutes, one drop was removed and placed into a microcentrifuge tube along with 

400 ul of E.coli.  The tubes were mixed well and kept at 37°C for 10 minutes.  After incubation, 

250 ul of the virus and bacteria mixture was added to 11 ml of warm top agar and poured onto a 

Petri dish.  The dishes incubated overnight, and the number of clear zones on the plate where 

virus had killed bacteria were counted.  Top agar was made with 0.9g agarose, 3.75g LB broth, 

and 150 ml DI water.  It is less dense than normal agar and allowed a better look at the growth of 

virus and bacteria on a plate.   

Results and Discussion   

The number of plaques were counted for each length of time and compared to the control 

group corresponding to that trial.  The averages were taken and plotted as percentages in Figure 

1.  As seen in the plot, the control group had a significantly higher survival rate than any of the 

groups that were exposed to UV.  Comparing plaque count of irradiated phage to non-irradiated 

phage showed that lytic activity decreased with increased exposure to UV.   There was a small 

difference in lytic activity between the 15- and 30-minute trials, but after that, a clear downward 
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trend is seen in groups exposed for longer than 30 minutes.  Table 2 shows the calculated 

standard deviations of each time segment.  A problem with the raw data was that many of the 

plates showed smears of cleared space (mimicking lytic activity) where individual plaques were 

not able to be counted.  The smears ranged from very thin and short; to long and wide, while a 

few covered almost ¼ of the dish.  This smear effect could be lessened by decreasing the 

concentration of phage by one half, to 5E-4.  Since individual plaques are not being counted, the 

average percentages may be lower than in actuality.   
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Table 1. Plaque counts were averaged and compared to non-irradiated phage plaque counts. 

 

 

Average 
Plaque 
Count 

% of 
Control 

Standard 
Deviation 

    

Control 149.1667 100 29.78661 

15 min 120.25 80.61453 30.12738 

30 min 116.75 78.26816 21.88036 

45 min 100.75 67.5419 16.84218 

60 min 84.25 56.48045 21.15366 

Table 2. Standard deviation was calculated and used to describe error in percentage comparisons. 
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Figure 1. The number of clear areas on the bacteria caused by irradiated virus were counted and 

compared to the amount counted for the control group.  The averages were taken and plotted as a bar 

graph in order to show the trend of the data as the virus was exposed for longer times to the UV. 
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Conclusion   

The trend seen in the results followed what was expected.  Over time, lytic activity 

decreased, falling in a steady decline for exposure times greater than 30 minutes.  After 15 

minutes, lytic activity dropped to 80.6 ± 30.1% of non-irradiated phage.  After 30 minutes, 

activity was 78.27 ± 21.88%; after 45 minutes, 67.54 ± 16.84%, and after 60 minutes, activity 

fell to 56.48 ± 21.15%.  The high margin of error emphasizes the large differences in plaque 

counts from trial to trial seen in Table 1.  With more repeated trials, the error would grow smaller 

and the averages would approach the true values showing the trend of lytic activity decline over 

periods of exposure to UV.  The most difficulty came from the irregularity in clear areas, namely 

the streaks where individual plaques were not distinguishable.  This could be fixed in future by 

varying the concentration of the virus exposed to UV and plated.  In this study, because assay 

techniques did not become successful until the last few weeks of available research time, it was 

not feasible to search further for a concentration producing more conclusive results.  Another 

issue with this study was that it did not mimic many environmental conditions and all UV 

exposure was done for virus in PBS in a Petri dish.  The lab setup was only similar to direct 

exposure in an open field.  In the future, this study would mimic other environmental conditions, 

such as phage existing in soil and murky water, at various depths, to better understand UV’s 

effect on bacteriophage survival.  This study intended to look at the protein expression patterns 

of bacteriophage with respect to UV conditions, so that can also be included in future study. 
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