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Abstract 

 A comparative study of Doubly Uniparental Inheritance (DUI) in the bivalve 

mollusks Mytilus edulis and Geukensia demissa has yielded unanticipated 

results. Around the world, it has been reported that members of the taxonomic 

family Mytilidae (along with the families of Unionidae and Veneridae) consistently 

exhibit DUI. However, the hard-to-place Geukensia demissa, which is a member 

of this family, has had varying reports of its DUI status. Most reports involving G. 

demissa vary with the location in which it is being studied, which prompts more 

questions than it answers. Due to many months of unsuccessful DNA purification 

attempts, sequencing and an actual determination and subsequent comparison 

of DUI within these two species failed to occur. What successfully occurred in 

this study was the inducement of reproduction in Geukensia demissa in tanks in 

a laboratory, and a successful purification of DNA from G. demissa followed by 

amplification of mtDNA using species-specific primers. 

Introduction 

 Until recently, it has been believed that there is a strict maternal 

inheritance of mitochondrial DNA (mtDNA) in animals. The idea that only the 

female’s mitochondrial lineage and genome is passed from parent to offspring is 

an unusually simple model that has had a huge impact on the fields of population 

genetics, evolutionary genetics, molecular ecology, and forensic science. 

Mitochondrial DNA is much smaller than the other DNA found in animals, called 

nuclear (or chromosomal) DNA. Chromosomal DNA is so named because it is 



3 

located on the chromosomes that are located in the nucleus. This chromosomal 

DNA makes up the vast majority of a cell’s genome. Even genes that code for 

events that occur in the mitochondria (such as those for proteins that function in 

this organelle) are found in chromosomal nuclear DNA. The smaller size and 

simple inheritance combination present in mtDNA has made it the ideal 

candidate for modeling in population and evolutionary genetics, as well as 

molecular ecology (White et al., 2008). This is why the scientific world was forced 

to pay attention when it was discovered that several species of bivalves, along 

with some other animals, do not follow this pattern of strict maternal inheritance. 

 Instead, these species of bivalves have been found to inherit mtDNA 

through a system known as doubly uniparental inheritance, or DUI. In DUI, unlike 

conventional mtDNA inheritance, two mitochondrial lineages (which include 

mitochondrial genomes) are transmitted to the organism from both its parents, 

not just the mother. Passamonti and Ghiselli describe this process in their 2009 

paper by explaining that it is called DUI because two mitochondrial lineages 

(along with their mitochondrial genomes) are inherited. To avoid confusion, what 

is inherited from the mother is called the F or F-type (F standing for female), and 

what is inherited from the father is called the M or M-type (M standing for male). 

What is particularly interesting about DUI is that within it, the M and F sequences 

show up to 30% sequence divergence.  An interesting point is that DUI is also a 

sex-determining mechanism (Passamonti and Ghiselli, 2009). 

 Burzyński et al. describe this process in greater detail in their 2003 paper. 

In this paper, DUI is once again described as a mechanism through which some 
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species of bivalves inherit a combination of M and F mtDNA. Because of this, 

these organisms are considered to be mosaics. Mosaics are organisms whose 

cells contain different genetic sequences, which is caused by a mutation during 

early development. If the fusion of two genetically distinct embryos at an early 

developmental stage were the cause, the individual would be considered a 

chimera. In the case of the aforementioned bivalves, they are mosaics because 

their mtDNA is a combination of their mother’s and father’s mtDNA, and the 

offspring express characteristics of both parents’ mtDNA. However, these 

bivalves are a unique type of mosaic. They are unique because both male and 

female offspring have the non-coding region from the male mitochondrial 

genome. Another unique characteristic of these bivalves is that both sexes are 

transmitted through sperm, like the M genome. This occurs through a process 

known as female masculinization. Female masculinization is a type of role 

reversal in which the F genome invades the M transmission route and replaces 

the previous M genome with its own (F) information. There are two main 

consequences of this role reversal. The first consequence is that the M to F 

sequence divergence is set to zero for the following generation (since no M 

sequence is being input). The other consequence, which is more of a long-term 

effect, is that males are usually heteroplasmic (meaning they have normal and 

mutant mtDNA molecules within a single cell) for both genomes and females are 

homoplasmic (meaning they have only one type of mtDNA molecule in a cell) for 

the F genome (Burzyński et al., 2003). The other way that DUI can occur is 
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through general recombination during development (as typically occurs in 

mosaics). 

 All the functions of DUI are interesting and important in and of themselves. 

Even so, they are becoming increasingly important as scientists continue to 

discover the roles that mitochondria play in animals. Passamonti and Ghiselli 

mention this in their 2009 paper as well, and some of the functions of 

mitochondria that they mention are signaling, fertilization, development, 

differentiation, ageing, apoptosis, and sex determination (including the origin of 

sex). As can easily be seen, these are all functions that are fundamental to life 

itself. 

 In order to continue studying these important roles of mtDNA and how it is 

inherited, it is important to know the species of animals in which DUI has 

consistently been identified. Breton et al. describe in their 2009 paper many of 

the bivalve species in which DUI has been discovered. These species include, 

but are not limited to Mytilus edulis, Mytilus galloprovincialis, Mytilus trossus, 

Venerupis philippinarum, Lampsilus ornata, Hyriopsis cumingii, Cristaria plicata, 

Inversidens japanesis, Venustaconcha ellipsiformis, Quadrula quadrula, and 

Pyganodon grandis. In general, these species are marine mussels, marine 

clams, and freshwater mussels from all over the world. They serve various 

ecological and economic functions that range from general consumption to 

freshwater pearl producers. 
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 The species of concern for this study were Mytilus edulis (a marine mussel 

commonly known as the blue mussel) and Geukensia demissa (an estuarine 

mussel commonly known as the ribbed mussel). 

 Mytilus edulis is a prominent littoral mussel that is widely distributed, with 

a life cycle typical of intertidal marine invertebrates that have extended larval 

dispersal and sedentary adulthood (Koehn et al., 1976). They have historically 

spanned from the Arctic to North Carolina, as was recorded in 1889. A study in 

the late 1950s found that M. edulis north of Cape Hatteras, NC survived year-

round, while south of that location the majority of the population died by mid-

summer. A following study published in 1960 determined that these die-offs 

south of Cape Hatteras were due to a vastly different temperature profile as 

compared to north of the cape. In 2005, mussels both north and south of Cape 

Hatteras experienced mass mortality events by early July. This same study 

concluded that at the time, the southern range of M. edulis had retreated to 350 

meters north of Cape Hatteras. The study determined that the southern range of 

this species is limited by an intolerance to high summer temperatures, which 

result in adult mortality events. Specifically, consecutive aerial exposures of M. 

edulis to temperatures greater than or equal to 32°C will result in mussel death 

(Jones et al., 2010). 

 Mussels are widespread on the coasts of many nations globally and are 

one of the most harvested and commercialized bivalve mollusks. Their affinity for 

mild climate zones in the northern and southern hemispheres expedite their 

cultivation (Rego et al., 2002). Within this commercialized industry of shellfish 
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cultivation, the marine mussel Mytilus edulis dominates (Bendezu et al., 2005). 

One reason for this is that mussels are harvested for their highly valued meat 

taste and texture; for M. edulis from Prince Edward Island, Canada, this is 

especially true. 

 Mytilus edulis belongs to the family Mytilidae. This family, along with 

Unionidae and Veneridae, is a family of mollusk bivalves that has consistently 

been shown to exhibit DUI all over the world (Breton et al.,2006, 2009; Cao et al., 

2004; Hoeh et al., 1997; Passamonti, 2007; Soroka, 2008; Burzynski et al., 

2003). Mytilidae is the best-studied family for DUI. This is likely because Mytilus 

mussels serve as an excellent model for studying the evolutionary forces that are 

operating on the mitochondrial genome. They enable this because through them, 

different levels of divergence can be studied (Breton et al., 2006). 

  Mytilus edulis served as the control for this study for the aforementioned 

reasons, and because it is the species from Breton et al.’s 2009 paper that is 

easiest to procure in South Carolina. Again, it is acting as the control because its 

DUI has already been established and documented. 

 Geukensia demissa is found from southeast Canada to Florida and the 

Gulf of Mexico. Within this range, it is predominantly found in estuarine salt 

marshes (Franz, 1996). Due to its ability to withstand salinities ranging from 4-

42‰, this species is able to survive in a multitude of environmental conditions 

(Wilbur, 1987). Similarly, G. demissa is able to withstand greater temperatures 

than other mussels, including M. edulis. Geukensia demissa is able to endure 
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temperatures that are less than 45°C. However, days on which the maximum 

temperature is greater than or equal to 45°C, the risk of mortality greatly 

increases (Jost and Helmuth, 2007). The ability of G. demissa to survive such 

extreme fluctuations and ranges in salinity and temperature are what allow this 

species to survive in a wide variety of habitats. This can make it difficult to 

classify as a mussel. It is this reason that in some literature Geukensia demissa 

is considered to be a marine mussel (Theologidis et al., 2008; Hoeh et al.,1997) 

and other times it is considered to be a freshwater mussel (Soroka, 2008). These 

variations in tolerance and habitat are also responsible for this species’ ability to 

exhibit characteristics of both marine and freshwater mussels. The studies 

conducted by Theologidis et al. in 2008 and Hoeh et al. in 1997 also described 

Geukensia demissa as being a member of the Mytilidae family, which means that 

it follows many of the previously discussed attributes of this family. 

 One variability between G. demissa and other members of the Mytilidae 

family (which includes the Mytilus subspecies {spp.}) is that the literature varies 

in its description of DUI within this species. Some studies have reported 

discovering DUI in G. demissa, while others deny its presence in this species. 

Most studies either describe G. demissa in strictly ecological terms rather than 

molecular ones. A large portion of papers that do associate molecular tests with 

G. demissa still relate those findings to ecology.  One such study to take the 

latter approach is Díaz-Ferguson et al.’s 2010 study that compared the genetic 

profile of G. demissa and five other salt marsh community members across four 

distinct geographical regions.  
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 The combination of Geukensia demissa’s ready availability in South 

Carolina fringe salt marshes, the small amount of strictly molecular studies 

conducted on this species, and the lack of certainty about its method of 

mitochondrial DNA inheritance in South Carolina populations specifically are 

what made it an ideal experimental species for this study. 

 Along with these reasons, both species used in this study were selected 

because of their ecological and/or economic importance. This study seeks to 

discover if the mtDNA in these species is inherited strictly maternally or if it 

follows the process of DUI.  

 

Methods  

Obtaining samples 

 When possible, the bivalves were collected from the field at a time when 

they were particularly reproductively active. This was dependent on the individual 

species and their locations, however both species of mussels do exhibit seasonal 

patterns of reproduction (Franz, 1996). A study of Mytilus edulis in Chester 

Basin, Nova Scotia, Canada collected their mature specimen over the summer 

(Breton et al., 2006). This was relevant to when M. edulis specimen for this study 

were collected because Nova Scotia and Prince Edward Island (where this 

study’s M. edulis were from) are neighboring Canadian islands. Since the M. 

edulis cannot be collected locally (due to the heat limitations that were previously 
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described), they were purchased from Philips’ Seafood Market in Myrtle Beach 

and used to validate the methods. 

 Due to Geukensia demissa’s larger southern range (compared to M. 

edulis), it was collected locally at Vereen Park in Little River, SC (33.88485°N, 

78.5972°W). Specifically, the G. demissa were collected at the low marsh 

borderline within the fringing salt marsh at this location. The location within the 

salt marsh (high marsh versus low marsh) is important to note, because mussels 

in these locations have very different reproductive and maturation attributes. One 

study that examined these differences was D.R. Franz’s 1996 study in Jamaica 

Bay, New York. Franz determined that low marsh populations of G. demissa will 

become mature after two full years of growing, and at smaller shell lengths than 

high marsh mussels. He also determined that high marsh mussels will become 

mature up to a full year after low marsh mussels in the same area (only 15 

meters horizontal difference). This reaffirms a common finding in scientific 

literature that there is a difference between the two study species; Geukensia 

demissa maturation (and subsequent reproduction) is determined by shell length, 

while Mytilus edulis maturation and reproduction are determined by growth rate 

(decreased growth rate in M. edulis results in reproduction in many populations 

of this species). 

 The length at which G. demissa become mature is location-driven. For 

example, a population of G. demissa in North Carolina became mature at a shell 

length of 20mm (Franz, 1996), while a researcher who frequently conducts 

studies approximately two hours south of this study’s sampling location at Baruch 
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Marine Lab (in Georgetown, South Carolina) has found that G. demissa 

specimens at this location typically reach maturity at approximately 70mm. This 

sizing is consistent with other researcher’s classification of G. demissa at this 

location; Jost and Helmuth classified G. demissa into size classes at this locale 

for their 2007 study. This size is in the middle of their “medium” size class. 

 Taking all of this information into consideration, only mussels greater than 

or equal to 74mm were used for this study; however, some mussels closer to the 

bottom of Jost and Helmuth’s “medium” size group (6-8cm) were also collected. 

These smaller mussels would be used after all of the larger mussels had been 

analyzed, if necessary. 

 

Gender determination and obtaining DNA 

 Once the specimens had been collected, their gametes (eggs from the 

females and sperm from the males) were then extracted via a thorough flushing 

of the mantle tissue with sterile seawater. Specimens were sexed via 

microscopic examination of  mantle-extracted material. Samples were kept 

separate as soon as their sex was determined.  

 The methods of sequence analysis and gamete extraction that were used 

in this study were based on those used by Burzyński et al. in their 2003 study of 

Mytilus trossulus (another member of the Mytilidae family). 
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 An F genome was to be obtained from mtDNA in the eggs and a 

recombinant genome will be obtained from the sperm. A pure male sample was 

also to be obtained. Burzyński et al. confronted this problem in their 2003 paper 

by obtaining an M genome from Swansea Bay in South Wales (this pure 

sequence was from an M. edulis individual). After the gametes had been 

removed from their parent using sterile seawater, this mixture (of seawater and 

gametes) was pelleted by centrifugation at 4°C and 500rpm (revolutions per 

minute) for five minutes. 

  STE-100 buffer (0.1M NaCl, 1M EDTA, 0.05M Tris-HCl, pH 8.0) was used 

to resuspend the gametes; a wash step was included first, then the STE-100 

buffer was used to resuspend the gametes a second time. They were then lysed 

with 0.3% SDS and 300 µg/mL Proteinase K at 56°C overnight (for 15.5 hours). 

Total DNA were obtained via phenol/chloroform extraction followed by ethanol 

precipitation. A TE buffer (1mM EDTA, 0.01M Tris-HCl, pH 8.0) at 10 µg/mL was 

used to suspend purified DNA.  

 

Testing DNA Extraction 

 After the purification was complete, DNA extraction was tested by running 

the products, buffer, BSA, EcoRI, and water (combined in the appropriate 

amounts) on an agarose gel via electrophoresis after the mixture had been 

allowed to incubate at 37°C for one hour, then 70°C for ten minutes, and finally 

4°C overnight.  
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 EcoRI was used because it is a restriction enzyme that cuts DNA’s sugar 

phosphate backbone at known sequences that are specific to this enzyme. It is 

important that the sequences (and their lengths) are known so that it can be 

determined if the desired target has been amplified. The sequence lengths are 

determined after amplification via agarose gel electrophoresis. This technique 

separates fragments and produces bands based on the fragments’ size and 

charge.  Since DNA is negative, it will run from the negative charge toward the 

positive charge on the gel. The sizes are separated by the gel because smaller 

fragments are better able to maneuver, and thus run farther on the gel than 

larger, less maneuverable fragments do. If the DNA were not digested by a 

restriction enzyme such as EcoRI, it would be too large to run at all, and would 

remain entirely in the sample well of the agarose gel. 

 If the extraction did not provide strong bands on the agarose gel, DNA 

was quantified using spectrophotometry at wavelengths of 260 and 280nm. The 

ratio of absorbance of the sample at 260nm to absorbance at 280nm was used to 

determine the sample’s purity. 

 

Agarose Gel Electrophoresis 

 A ladder was mixed using 4μL ladder DNA and 1μL SYBR Green Stain 1. 

9μL PCR product DNA, 2μL of 6x Agarose gel loading dye, and 1μL SYBR 

Green Stain 1 were added to samples. All samples were vortexed for 2 seconds 

in order to thoroughly mix. Then, samples were centrifuged at max speed for 

approximately 15 seconds. Each sample was then loaded into its assigned well 
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in the agarose gel in its entirety. Once all samples had been loaded, an 

approximately 90 Volt electrical charge was run through the gel for approximately 

one hour (or until dye bands were at least ¾ of the way down the gel). Pictures of 

the gel were taken and analyzed to determine DNA extraction success. 

 

Amplification of mtDNA 

  The forward primer (CBM) was AGAACGGCGTGAGCTAGTTC (16S 

rRNA gene, nucleotide positions 3313 to 3332), the reverse primer (CBM2) 

sequence was ACCTTCACCAGGCGTTTAAG (cytochrome b gene, nucleotide 

positions 4833 to 4814). This target sequence is common to both the M and F 

genome. Therefore, it will be amplified in both male and female specimens. M. 

edulis-specific primers M1 (AAACCCTTCGTCCACAAGG) and M2 

(AGCCTTTTTGTCATCATTCTGT) were used to check for the presence of M 

genome characteristics. These techniques are the same as those used by 

Burzyński et al. in 2003. Oligonucleotides were manufactured by Sigma-Aldrich 

Corporation in The Woodlands, Texas. 

 PCR was conducted in 50μL total reactions, containing 2x PCR Master 

Mix, 2μL  each of appropriate primers (one upstream primer and its 

complimentary downstream primer), 5μL diluted (1/10) DNA, and 16μL 

endonuclease-free water.  

 Thirty-three cycles were repeated, which included a denaturation of 94°C 

(for 3 minutes for the first cycle and 1 minute for the following cycles), annealing 

at 54°C (for 30 seconds), and extension at 72°C (for 1 minute, 30 seconds for the 
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first 32 cycles and 5 minutes for the last cycle). After the thirty-three cycles ran, 

the PCR machine will keep products at 4°C until turned off. This program was 

named “SNHE” and was stored in the PCR machine. PCR products will be tested 

using agarose gel electrophoresis. 

  A PCR program named “SNH2” that was identical to “SNHE” except for a 

55°C annealing temperature was created to be used with species-determining 

primers. These primers were taken from “PCR Technique for the Identification of 

Mussel Species” (Rego et al., 2002). The upstream primer called 580-1F 

(GAGCTGAGCGAGGAGA) and the downstream primer called 580-1R 

(ACCAGACTGCAACCTGA) were used in combination with their resultant 

fragment size to molecularly determine the identity of the species being tested. 

 

 

Gradient PCR 

 A gradient PCR was conducted after unsuccessful PCR amplification in 

order to determine the specific annealing temperatures that would best amplify 

the target sequence using the CBM pair of primers. This was performed using 

20μL total samples, consisting of 10μL 2x Master Mix, 1μL each of upstream and 

corresponding downstream primers, 2μL diluted (same as before) DNA, and 6μL 

endonuclease-free water. Gradient PCR was performed for thirty-three cycles, 

with a 94°C denaturation (for 3 minutes the first cycle and 1 minute for the 

subsequent cycles), annealing at 50°C to 60°C for 30 seconds (the temperature 

increased by {3/2}°C in each row from Row 1 to Row 8, over this temperature 
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range), and extension at 72°C for 1 minute, 30 seconds from cycles 1-32, and a 

final extension at this temperature for 5 minutes. Finally, products were kept at 

4°C for 8 minutes. These gradient PCR products were then examined via 

agarose gel electrophoresis.   

 

Chelex Purification 

 Chelex purification was used as another attempt at purifying M. edulis 

DNA. If successful, it would be a quick and easy purification technique that would 

be very affordable. This purification technique shares the first couple steps of 

flushing mantle tissue with approximately 10mL of sterile seawater, and then 

centrifuging at 500xgravity. However, this technique centrifuged at that speed for 

ten minutes instead of five.  The supernatant was then decanted, and 500µL of 

10% Chelex was added. This mixture was then heated for ten minutes at 95ºC. 

After its heat bath, the mixture was centrifuged at 14,000rpm for one minute, and 

200µL of its supernatant was removed. This supernatant contained genomic 

DNA, and it was added to the PCR reaction. 

 

 

Geukensia demissa Tank Set Up 

 Geukensia demissa specimens were not collected until early February. 

Since this is well outside of the species’ peak reproductive season, it was 

necessary to keep them in tanks and try to trick them into believing that it was 

their peak reproductive time (which is early August). In order to accomplish this, 
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temperature and hours of light were slowly increased to reach those levels seen 

in South Carolina in August. Besides these two August-like conditions, a high 

availability of food was also necessary to be established. The high food 

availability was necessary because a high energy availability, coupled with a low 

stress level, is essential for reproduction to occur in G. demissa.  

In order to establish this, ten gallon tanks were filled approximately half full 

with local estuarine water that had been collected with carboys. Water quality 

measurements (including temperature, salinity, and pH) were taken both before 

and after water was placed in the tank. Tank set up included a submerged 

thermometer, tank heater, and 1-2 air stones (depending on amount of water and 

biomass in tank). All measurements were recorded. After ideal temperature of 

32°C was established, tank was kept at this temperature to expedite G. demissa 

gamete maturation. Salinity was kept in 15-39‰ range so animals would not 

undergo haline-induce stress. Specimens were fed Kent Marine PhytoPlex food 

(which consisted of aquacultured phytoplankton in solution) as needed. Feeding 

typically occurred once to twice a week. Above the tank set-up there was a Grow 

Green light that was programmed to increasing intervals of light to dark (to help 

simulate high summer conditions). Figure 1 gives a visual as to how the 

Geukensia demissa maturation tank was set up. 
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Figure 1—Geukensia demissa tank set up. This figure shows how the tank, 
Grow Green light, food, water quality testing equipment, and microscope were 
set up in the lab space. 
 

 

 

Checking for Maturity of Geukensia demissa gametes 

 Specimens were selected to be examined to determine if they were 

reproductively mature. The conditions under which the specimens had been 

living were observed and recorded. From the literature, it appeared that these 

conditions included large size (would have been classified in “large” size group 

by Jost and Helmuth in 2007) and close proximity to tank heater (which would 

mean that the specimen had experienced high, summer-like temperatures for the 

longest period of time). These mussels underwent the same gamete extraction 
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techniques as previously described. Color, thickness, and overall appearance of 

mantle tissue was noted. Flushed materials from the mantle were examined 

microscopically for the presence of mature gametes, which were expected to 

look similar to those of M. edulis.  Once a true mature female was discovered, its 

conditions were observed and used as a measure of comparison for subsequent 

identifications. The most immediately obvious of these is that mature G. demissa 

oocytes are fluorescent yellow. 

 

Purification of Geukensia demissa DNA 

 QIAGEN DNeasy Blood and Tissue Kit (catalogue number 69504) was 

used to purify DNA from mature specimens. The procedure for “Purification of 

Total DNA from Animal Blood or Cells; Spin Column protocol” in the 

accompanying handbook was followed. Within this protocol, the optional step to 

obtain maximum DNA yield was followed. 

 

Results and Discussion 

 Although the methods of Burzyński et al. in their 2003 paper seemed to be 

very straightforward and capable with the materials available at Coastal Carolina 

University, using these methods proved to be ineffective. They were ineffective 

because although purification of DNA was successful, it proved impossible to 

obtain the desired target sequence after PCR amplification of the purified DNA. 

This failed PCR amplification implied either the presence of a PCR-inhibiting 

molecule in the preparation, or the primers were unable to anneal to a 
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complimentary sequence. If the latter explanation were true, it would mean that 

the specimen from which the DNA had been purified was not the species for 

which the primer was designed (M. edulis).  The repeated failure to obtain an 

amplified DNA sequence, especially after the purified DNA had been stored for 

several weeks, resulted in the numerous subsequent tests and purification 

methods used in this study.   

 For example, the second set of primers (580-1F and 580-1R) were 

procured in order to determine if the specimens that had been obtained from the 

seafood market were actually M. edulis. The sequences came from Rego et al.’s 

2002 study, and the idea of using molecular means as a way to identify M. edulis 

was also supported by Bendezu et al.’s 2005 study on Mytilus spp. in Irish 

waters. Specifically, the 2002 study conducted by Rego et al. showed that M. 

edulis, whether from Prince Edward Island (Canada) or Ría de Arousa (Spain), 

will exhibit either a 400-450bp band or a 1300bp band. If the specimen exhibited 

a 555bp band, it would be Mytilus galloprovincialis. This knowledge can then be 

used to identify the species. 

 Due to the amount of time spent trying to obtain a pure M. edulis DNA 

sample with valid methods, the prime reproductive season of Geukensia demissa 

(from May to October) passed by without obtaining any specimen. In the interest 

of pushing forward with the project and hopefully obtaining some usable data, the 

decision was made to push onto Geukensia demissa and collect samples from 

the field, even though it was early February. 
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 In order to obtain usable, mature gametes from the February G. demissa, 

additional literature research on G. demissa growth, reproduction (natural and 

induced), and mortality was conducted. Although no studies that induced G. 

demissa reproduction were found, there was a plethora of information on them, 

since they are such a widespread and ecologically important species.  

 One very helpful study in understanding G. demissa growth and 

reproduction was David Franz’s 1996 study on the size and age at first 

reproduction of G. demissa in a New York salt marsh. This study reported the 

notable differences in these areas between low marsh mussels and high marsh 

mussels. Since the G. demissa collected in this study were on the borderline low 

marsh (meaning that they were obtained from the boundary between the low 

marsh and the beginning of the high marsh), Franz’s study provides valuable 

insight on attributes of each population that this study’s G. demissa specimens 

possess. Franz’s study also helped to establish ways to expedite G. demissa 

maturation because he observed that the low marsh mussels’ accelerated growth 

rate and maturation is due to their increased amount of time to filter food out of 

the water column (since high tide would reach and last longer for these mussels 

as compared to the high marsh mussels) and the increased amount of food still 

in the water when it reaches the low versus high marsh mussels. The difference 

in food availability was also observed by Hillard and Walters in 2009. 

 Jost and Helmuth, in their 2007 study on how temperature affected 

mortality in G. demissa, made some observations on food availability as well. 

These and other observations in Jost and Helmuth’s study were particularly 
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helpful for this study. They related food availability and temperature regulation 

not only to placement in the marsh (high, low, middle), but also to body 

placement/orientation and presence (or lack) of vegetation. Size of organisms as 

compared to their experience of heat was also observed. This too was very 

helpful in researching G. demissa maturation in the lab, because they found that 

two organisms that are undergoing the same exact conditions and are identical in 

every regard except for size will experience very different body temperatures. 

Another very helpful piece of information from this study was the observation that 

a submerged mussel’s body temperature will be very nearly identical to that of 

the water surrounding it. This was extremely helpful because the G. demissa 

kept in tanks in this study were submerged at all times except when their tanks 

were being cleaned.  Removing the specimens until their tank water returned to 

as near the temperature that the old water had been was very useful in 

preventing gains made prior to tank cleaning from being lost.  

 This study found that there were the fewest deaths and appeared to be 

the most mussel “contentment” (majority of mussels were open and filtering, 

water was clear, food consumption was slightly increased, etc.) when the water 

temperature was kept at 32°C. As per Neufeld and Wright’s 1996 on salinity 

change and cell volume, along with Wilbur’s thesis research in 1987, tanks were 

kept within the 4-42‰ range. Most commonly, the salinity would be near 15‰ 

when the water was changed, and it often got up to 37‰ before it got changed at 

the end of the week. 
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 Yet another helpful piece of information from Jost and Helmuth’s 2007 

study was that one of G. demissa’s important ecological roles is alleviating 

nutrient deficiencies via deposition of nitrogenous wastes on the sediment 

surface, in the form of their pseudo-fecal casts.  More extensive observations on 

the relationship between nitrogen loads and G. demissa were made by Chintala 

et al. in 2006. They observed that the increased nitrogen levels caused by 

anthropogenic activity result in increased food sources for G. demissa. Both 

phytoplankton growth and abundance and particulate organic material (POM) 

abundance are increased along with increased nitrogen; phytoplankton and POM 

are food sources of G. demissa. This increased growth of food sources and in 

turn Geukensia demissa result in increased reproduction. Thus, a suggestion for 

future research would be to include consideration of nitrogen content of food for 

mussels when trying to accelerate their maturation and reproduction in the lab. 

 Another consideration to be given to mussel food in the lab in future 

studies is the exact species of phytoplankton that are in it. Ren et al. considered 

this in their study of assimilation efficiency of nine different phytoplankton species 

in the mussel Perna canaliculus in 2006. In accordance with the results of their 

study, a diet that consists of dinoflagellates as compared to flagellates or diatoms 

will result in significantly higher assimilation (84.5% as compared to 77.9% or 

61.7%, respectively). Such specific considerations were not given to the food 

selected in this study; however, it would be a great improvement to future studies 

to make such a consideration. 
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 Another great addition to future studies that was not available during this 

study is a description of the various stages of oogenesis and spermatogenesis in 

mussels. This process is similar amongst mussel species. Yurchenko and 

Vaschenko described these processes in their 2010 paper on Modiolus kurilensis 

(a marine mussel). Ҫ ek and Şereflişan describe these processes in Unio 

terminalis delicates (a freshwater mussel). Having descriptions and pictures of 

what these immature stages, of which there are five in each and which each 

have their own names, look like available in the lab when determining if the 

gametes are mature enough to obtain pure DNA from them would be extremely 

helpful. This would be helpful not only so that immature gametes could be 

identified, but also so that the scientist would have an idea as to how long it 

would be until the gametes were mature. 

 Even though this study was unable to determine if DUI is the mechanism 

of mitochondrial inheritance in G. demissa, it was able to finally obtain a usable, 

long-lasting DNA purification from G. demissa using the QIAGEN DNeasy  Blood 

and Tissue Kit’s procedure for “Purification of Total DNA from Animal Blood or 

Cells; Spin Column protocol”. This was a major breakthrough in the project, but it 

occurred near the end of the available research period. Figure 2 shows the 

successfully purified and amplified DNA. As is shown in the figure, in Lanes 2 

and 3, the chromosomal DNA was successfully amplified via PCR (using 

“SNH2”) and species-specific primers 580-1F and 580-1R. As can clearly be 

seen, the DNA under these conditions was successfully amplified. Figure 2 also 

clearly shows that in Lanes 4 and 5DNA sequences common to M & F genomes 
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of M. edulis were not amplified. These had undergone all of the same conditions 

as that in Lanes 2 and 3, except that the primers used were CBM and CBM2; 

these primers were specifically designed to amplify M. edulis mtDNA, not G. 

demissa mtDNA. These results for Lanes 4 and 5 were anticipated, because 

even though both of the test species were members of the family Mytilidae, they 

are not any more closely related, and although they cohabitate in the Northeast 

United States of America, G. demissa has a much larger overall range and has 

the ability to inhabit many more habitats than M. edulis does. 
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Figure 2—DNA purification after using the QIAGEN DNeasy Blood and 
Tissue Kit. This figure shows the results of purification using the aforementioned 
kit, followed by PCR amplification using the “SNH2” cycle. Lane 1 contained the 
ladder, Lanes 2 and 3 contained mtDNA amplified using the species-specific 580 
pair of primers (from Rego et al., 2002), and Lanes 4 and 5 contained the mtDNA 
that failed to be amplified after PCR amplification with the CBM pair of primers 
(from Burzyński et al., 2003). 
 

 

 

 An excellent future study would be to examine the two species and 

several other local species of bivalves found in the fringing salt marshes of South 

Carolina to determine if they exhibit DUI, using this means of purification. This 

would be particularly useful because of the common observation of differences 

within the same species depending on geographic location. Díaz-Ferguson et 
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al.’s 2010 study examined this to a more specific degree, amongst six North 

American Atlantic salt marsh community members. They broke the Atlantic coast 

up into four distinct regions based on their specific attributes; these regions were 

the Upper Virginian, Lower Virginian, Georgia-South Carolina, and Florida. When 

compared, it was found that Geukensia demissa exhibited significant 

differentiation between the northernmost populations and all the other regions. 

Díaz-Ferguson et al. also determined that latitudinal shifts in ecological 

interactions are environmentally rather than heritably adapted. Their study also 

brought up the point that 42 North American species showed a significant 

nucleotide diversity increase from north to south. All of these facts, in addition to 

the variable and, in some cases, absent information on DUI in many species of 

bivalves lead to the strong potential for future research. 

 

Conclusions 

 This study has uncovered the potential for future studies in the 

mitochondrial DNA inheritance in bivalves. Particular bivalves of interest would 

be those that have large geographic ranges, ecological importance, economical 

importance, and/or varying reports of inheritance from around the world. Due to 

the high polypeptide content of bivalves (as a side effect of their high mucus 

content), traditional DNA purification methods are not very effective. However, 

this study discovered that the QIAGEN DNeasy procedure for “Purification of 

Total DNA from Animal Blood or Cells; Spin Column protocol” works extremely 

well at purifying long-lasting DNA from bivalves.  Another great success of this 
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project was the discovery that it is possible to induce reproductive maturation of 

G. demissa (and likely other Mytilus spp.) in tanks in the laboratory under the 

correct conditions. For G. demissa, these conditions were tank temperature of 

38ºC, salinity between 14‰ and 38‰, and 11.5 hour “day” (Grow Green light on) 

coupled with a 12.5 hour “night” (Grow Green light off) light cycle. It is possible 

that a further increase day to night ratio would expedite reproductive maturation 

even more than in this study. 

 Although attempts at amplifying M. edulis mtDNA target sequences were 

unsuccessful, G. demissa amplification with CBM primers (CBM and CBM2) was 

successful. This latter amplification was only possible due to the combination of 

the successful tank reproductive maturation and QIAGEN DNeasy Blood and 

Tissue Kit purification coupled with the best PCR program found in the study 

(program “SNH2”) 

This knowledge, coupled with the sizable knowledge base of related 

information, lays the foundation for future studies. 
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