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Abstract 

Salt marshes have low levels of vertebrate diversity yet extremely high rates of endemism.  Two 

of these endemic species are the Saltmarsh (Ammodramus caudacutus) and Seaside Sparrow (A. 

maritima); the closely related Nelson’s sparrow (A. nelsoni) winters exclusively on salt marshes. A 

previous winter study found that individual sparrows of all three species were highly faithful to specific 

banding sites, and that the relative abundances of the three species differed by site.  I hypothesized that 

the reason sparrow assemblages varied among sites was that the three species’ winter habitat requirements 

were different.  All three species winter in salt marshes, but detailed habitat requirements of each species 

are largely unknown. Studying the relationship between habitat and abundance could improve predictions 

of how changes to the marsh habitat caused by sea level rise and coastal development will affect 

wintering sparrows.  I sampled wintering sparrow populations by mist-netting throughout the winter at 18 

sites in South Carolina.  I also measured habitat data on a landscape scale and at the scale of vegetation 

cover in small plots.  I built regression models to investigate the relationship between species abundance 

and habitat.  I found that both sparrow assemblage and habitat composition differed among the five 

marshes and 18 sites.  The habitat-driven models’ performance was either not significantly different from 

or was significantly worse than null models which estimated sparrow assemblage structure from capture 

effort at each site combined with study-wide and site-specific capture rates for each species.  The 

similarities in sparrow assemblages at sites shared by the present study and a previous study indicate that 

patterns in relative abundance are stable from year to year; yet poor model performance indicates that 

these patterns cannot be predicted by habitat as measured in this study alone.   
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Introduction 

Salt marsh ecosystems are globally rare, yet particularly well-developed along the eastern coast of 

North America (Greenberg et al. 2006).  One unique characteristic of saltmarshes is their high rate of 

vertebrate endemism.  Greenberg et al. (2006) identified 25 terrestrial vertebrate species endemic to 

coastal marshes, five of which depend solely on saltmarshes for the completion of their entire life cycle.  

Two of those saltmarsh obligate species are the Seaside Sparrow (Ammodramus maritimus) and 

Saltmarsh Sparrow (A. caudacutus) (Greenberg et al. 2006).  One subspecies of the closely related 

Nelson’s Sparrow (A. nelsoni subvirgatus) also depends entirely on salt marshes during its life cycle.  

Two other subspecies of Nelson’s Sparrow (A. n. nelsoni, A. n. alterus) breed inland but depend on salt 

marshes in winter (Shriver et al. 2011).  During the non-breeding season (approximately Oct-April), all 

three species co-occur in salt marshes along the Atlantic coast from Virginia to Florida and along the Gulf 

of Mexico (Greenlaw and Rising 1994; Post and Greenlaw 2009; Cristol et al. 2011; Shriver et al. 2011).       

Because of threats to salt marshes, these three species are listed as species of conservation 

concern (U.S. Fish and Wildlife Service 2008).  Threats to coastal wetlands include destruction and 

degradation caused by human development.  An estimated 30-40% of estuarine wetlands have been 

destroyed by development and agriculture (Greenberg et al. 2006).  Humans can also affect estuarine 

marshes by introducing invasive species, either accidentally or intentionally.  Spread of invasive 

vegetation is of special concern because these plants can replace native vegetation used by salt marsh 

specialist species like Ammodramus marsh sparrows.  For example, Saltmarsh Sparrows were less 

abundant in stands of the invasive common reed, Phragmites australis, when compared to plots with 

native vegetation (Benoit and Askins 1999). 

In addition to human development, sea-level rise resulting from climate change poses a major 

threat to salt marshes and salt marsh obligate species like the Seaside and Saltmarsh Sparrow.  Over the 

past century, global sea level rose 1.8 mm/yr, with that rate increasing to 3.0 mm/yr over the past decade 

(Rosenweig et al. 2007).  Global sea levels are expected to rise a further 0.18 to 0.59 meters by the end of 

this century (Bernstein et al. 2007).  Such rises in sea level are likely to result in vegetation shifts, with 
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Spartina alterniflora replacing Spartina patens in the high marsh, decreasing habitat (especially high 

marsh refuges) for Seaside and Saltmarsh Sparrows throughout their breeding ranges and for all three 

species throughout their winter ranges (Erwin et al. 2006).  Rising sea levels are also likely to result in 

more extreme flooding during spring tides and storms, which already have catastrophic consequences on 

sparrow nesting success (Shriver et al. 2007; Bayard and Elphick 2011). 

Salt marshes may persist despite a rise in sea level if the rate of marsh sediment deposition is 

equal to or greater than the rate of local sea-level rise (Kennish 2001).  Sea levels in South Carolina are 

rising at a rate of 3.2 mm/yr to 4.1 mm/yr (NOAA 2010) with marsh sediment accretion rates ranging 

from 1.3 mm/yr to 4.5 mm/yr (Kennish 2001), meaning that some South Carolina salt marshes may be 

able to keep pace with local sea-level rise.  If marsh sediment deposition rates are equal to or greater than 

the rate of sea-level rise, the marsh can either expand laterally or shift inland (Orson et al. 1985).  

However, the marsh may still be threatened as coastal development can block this landward shift (Wilson 

et al. 2007).  As the opposing forces of sea-level rise and coastal development converge on marshes, it is 

likely that marshes will undergo changes in both size and composition within the next century, with 

portions of low marsh being converted to open water and areas of high marsh changing to low marsh 

(Titus et al. 1988).  In addition to causing habitat shifts, sea-level rise is likely to result in a net loss of 

total salt marsh area.   Craft et al. (2008) modeled marsh change using mean (52 cm) and maximum (82 

cm) estimates of sea-level rise over the next century along the southeast coast and found that marsh loss is 

expected to range from 20% (mean sea-level rise scenario) to 45% (maximum sea-level rise scenario).  

Sea-level rise and human disturbance will alter salt marshes not only on a smaller scale (e.g. vegetation 

shifts within a marsh), but also on a landscape scale.  These landscape-level changes may be related to 

marsh size and isolation, amount of open water, amount of high and low marsh, and amount of 

development in and around marshes.  These changes will impact salt marsh obligates such as Seaside and 

Saltmarsh Sparrows as well as species like the Nelson’s Sparrow which spend a considerable amount of 

time in salt marshes (Craig and Beal 1992; Shriver et al. 2004).   
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Ammodramus marsh sparrow abundance can be related to landscape parameters.  For example, 

both Seaside and Saltmarsh Sparrows are more abundant in larger marshes within their breeding ranges 

(Benoit and Askins 2002; Shriver et al. 2004).  Additionally, sparrows may be less abundant in marshes 

with more areas of open water during the breeding season since they depend on dense vegetation in the 

high marsh for ground nesting (Craig and Beal 1992).  Marsh sparrows are also affected by isolation of 

marshes (possibly caused by increased development along coastlines), with Nelson’s and Saltmarsh 

Sparrows occurring more frequently in less isolated marshes during the breeding season (Shriver et al. 

2004).  Human disturbance in and around marshes can also affect sparrow populations; Nelson’s Sparrow 

occurrence is negatively related to road density (Shriver et al 2004) while Seaside Sparrow nest density 

and success is lower in marshes containing mosquito ponds and ditches (Pepper and Shriver 2010).  In the 

post-breeding and winter season, mudflats and exposed edges of intertidal creeks in the low marsh may 

serve as important sources of invertebrate food for sparrows (Greenlaw and Rising 1994; Post and 

Greenlaw 2006; Hill 2008; Post and Greenlaw 2009; Shriver et al. 2011).     

In order to be able to predict how changes to marsh size, extent, and vegetation will affect 

Ammodramus sparrows, the birds’ current habitat requirements must be known at every life stage.  

Previous studies discovered important information regarding marsh sparrow habitat use during the 

breeding and post-fledgling seasons, which can potentially help land planners manage salt marshes for the 

conservation of Ammodramus sparrows on breeding grounds (Gjerdrum et al. 2005; Hill 2008; Shriver et 

al. 2010; Meiman 2011).  However, it is also important to know about sparrow winter habitat 

requirements, especially since habitat use can differ depending on season or life stage (Hill 2008; Sillet 

and Holmes 2008; McClure et al. 2012).  

Even though knowledge of the breeding ecology of Ammodramus marsh sparrows is increasing, 

there is little knowledge of their winter ecology.  Data gained from winter habitat studies can be used in 

models predicting the occurrences of Seaside, Saltmarsh, and Nelson’s Sparrows at different marshes 

within their winter ranges.  Identification of habitat variables associated with the abundance of each 

species will not only increase knowledge of these species’ winter ecologies but can also be combined with 
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models of habitat change caused by sea-level rise to predict how sea-level rise will affect wintering 

populations of marsh sparrows.   

Two recent studies investigated the biology of wintering Ammodramus sparrows (Winder et al. 

2012; Shaw 2012).  A 2010-2011 winter banding study on sparrow site fidelity conducted in South 

Carolina revealed a pattern where different proportions of each species were captured at different sites 

(some of which were located in the same marsh and separated by less than 2 km)  in consecutive years 

(Shaw 2012).   

These observations led to the questions being investigated by the present study: 1) Are the 

differences in relative abundance related to differences in habitat between sites, and 2) Can occurrences of 

Ammodramus marsh sparrows be predicted based on habitat characteristics at the banding site?  In order 

to investigate these questions, I quantified habitat using aerial photographs and performed vegetation 

surveys at 18 marsh sites along the South Carolina coast to measure habitat at each banding site.  From 

that analysis I generated two separate sets of multiple regression models: one set related the relative 

abundances of each species to habitat variables, and the other set related capture rate of each species to 

habitat variables.  I then investigated whether these regressions were able to predict the sparrow 

distribution at new sites.  To test the performance of the relative abundance and capture rate models, I 

compared the predictions made by the habitat models to the predictions made by the null models which 

predicted sparrow occurrence at each site using study-wide relative abundances and capture rates.   

Methods 

Study Sites 

I chose study sites by viewing aerial photographs of candidate high marsh sites in South Carolina 

marshes using Google Earth.  From the aerial map searches, I found a total of 133 possible sites in six 

marshes which appeared suitable for banding during the winter.  “Suitable” sites were mostly small 

patches of high marsh surrounded by a matrix of low marsh; I reasoned that large numbers of individuals 

would become concentrated at these sites during high tides.  I also considered strips of high marsh 

between upland and low marsh because birds may also become concentrated in these areas, but also 
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because inclusion of these sites allowed me to investigate whether these marsh-edge sites attracted a 

different mix of sparrows than sites near the center of marshes.  Both types of sites had a similar aerial 

appearance to sites where a previous study had success capturing sufficient numbers of birds (Shaw 

2012).   Of those 133 sites, I chose 9 banding sites between the North Carolina border (approx. 

33°51'40.43"N, 78°33'9.83"W) and Bulls Bay, SC (33° 1'27.01"N, 79°31'0.36"W) based on logistics and 

accessibility.  Many of the 133 sites were eliminated because they were not accessible (i.e. were on 

private land or blocked by intertidal creeks); several because there were no good places to set nets, and 

others were eliminated because they were accessible by boat only and my access to boats could be 

unpredictable.  The Town of Kiawah Wildlife Biologist, Aaron Given, banded at 18 additional sites on 

Kiawah Island (approx. from 32°37'55.32"N, 80° 2'2.88"W to 32°34'58.07"N, 80° 8'36.45"W).  I 

randomly chose nine of those Kiawah sites for habitat and banding analyses.  The five marshes were (with 

approximate areas and number of banding sites in parentheses) Waties Island (470 ha, two banding sites), 

Huntington Marsh (1140 ha, two sites), North Inlet (3825 ha, four sites), Cape Romain National Wildlife 

Refuge (12,110 ha, one site), and Kiawah Island (3650 ha, nine sites).  The distribution of the study 

marshes along the SC coast is presented in Figure 1.   

Habitat Quantification 

I performed a GIS analysis of each site using year 2006 infrared digital orthophoto quarter 

quadrangles (DOQQs) obtained from the South Carolina Division of Natural Resource’s (SCDNR) GIS 

Database as base layers.  I estimated habitat variables including percent cover of open water, low marsh, 

high marsh, upland, and beach/shell gravel within a 400-m radius and a 70-m radius around the banding 

site.  Other landscape variables measured were latitude, length of inter-tidal creeks and, as a method to 

distinguish capture sites near the edges of marsh from those more central, distance to nearest tree.  I used 

a “heads-up” digitization method (Bolger et al. 1997; Higanbotham et al. 2004) using the polygon 

drawing tool in ArcGIS v.9.3 (ESRI, Redlands California) to create habitat layers at map scales of 

between 1:1,000 and 1:4,000.  Such a map scale provided enough detail where boundaries of different 

habitat types could be viewed and traced easily.  It was possible to digitize different habitats using aerial 
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photos because different marsh features possessed different colors and textures on the images 

(Higanbotham et al. 2004).  In the aerial photographs used in this analysis, open water had a homogenous 

and smooth dark blue appearance, low marsh had a stippled blue-green-gray color appearance, high marsh 

was beige and stippled, upland areas appeared red, and inter-tidal creeks appeared as thin, smooth, gray-

blue lines.   

I quantified land cover at two spatial scales: 1.5 ha (70-m radius from the banding site) and 50 ha 

(400-m radius from the banding site).  Estimates of breeding season home ranges vary from 0.4-5.7 ha 

(Greenlaw and Rising 1994) to up to 50 ha (Shriver et al. 2010) for Saltmarsh Sparrows, and 0.12 ha to 

6.6 ha for Seaside Sparrows (Marshall and Reinert 1990; Post and Greenlaw 2009).  I examined both 

scales (1.5 ha and 50 ha) to determine whether habitat selection was occurring at one scale but not the 

other or whether some habitat variable was equally important to sparrows at different scales.  I also 

studied both scales because marsh sparrows may use different areas of the marsh depending on tidal level.  

The 1.5 ha scale in this study was very representative of high marsh roost sites that sparrows use during 

high tide, while the 50 ha scale included areas of low marsh that sparrows may be using as foraging 

grounds during low tide.  Measuring habitat at both of these scales allowed me to quantify habitat in the 

two different areas of marsh that sparrows might be using.     

Because individual plant species could not be identified from aerial photographs, and including 

more detailed habitat information can improve model function (McClure 2012), I performed ground 

vegetation sampling so that percent composition of each plant species could be considered for statistical 

modeling.  I sampled vegetation at 15 randomly selected locations exposed at low tide within a 70-m 

radius of the banding site and at 30 more randomly selected locations exposed at low tide from the 70-m 

radius out to a 400-m radius of each banding site.  If I could not reach a vegetation plot because of a tidal 

creek blocking access, I sampled the closest point possible.  Within a 1-m
2
 quadrat centered on each 

sampling location, I visually estimated and recorded percent cover of each plant species as well as of bare 

ground. Vegetation sampling occurred from July 2011 through July 2012.  Because sparrows are likely to 

select high marsh vegetation on the basis of structure rather than based on what species a plant is, I 
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combined plant species into several categories to simplify analyses and reduce the amount of redundancy 

in my vegetation variables.  Those vegetation classes were: low grass (consisting of Salicornia spp., 

Limonium carolinianum, Distichlis spicata, and Batis maritima), high grass (consisting of Juncus 

roemerianus and Spartina patens), and woody shrub (consisting of Borrichia frutescens and Iva 

frutescens). 

GIS Accuracy Assessment 

 To determine digitizing error, I compared vegetation plot compositions to their GIS 

classifications.  If a vegetation plot consisted of at least 50% S. alterniflora and bare ground combined, it 

was considered low marsh, while a vegetation plot containing less than 50% bare ground and S. 

alterniflora combined was considered high marsh.  The percentage of vegetation plots accurately 

classified in GIS out of the total number of plots surveyed on the ground was used as a measure of 

digitizing accuracy.  The results of this assessment only determined my accuracy of discerning between 

areas of high and low marsh using GIS because vegetation plots were only at areas that sparrows would 

use, meaning either low or high marsh.  Because other features like upland and open water were 

distinctive in appearance on the aerial photographs used for digitization, comparisons of on-the-ground 

points and GIS classifications of these features were not performed unless there was uncertainty about 

their location.    

Capture Methods 

Banding occurred from October 2011 through April 2012 on days with an early morning (0700 

hr-1100 hr) spring high tide (1.3 m to 1.9 m above MLLW).  During each banding visit, mist nets were 

placed in the high marsh (Plentovich et al. 1998), where sparrows seek refuge from rising water levels 

during high tides.  I used nets measuring 2 m x 12 m or 2 m x 6 m with a 30-mm mesh size on 3.1-m 

metal poles to catch birds.  The number of nets set at each site depended on the size of the vegetation 

patch where birds were concentrated, but ranged from two to six and were usually arranged in a “U” or 

“V” shape along the edge of a patch of high marsh vegetation.  Birds were flushed into nets from their 

high tide roost sites when researchers walked through patches of high marsh vegetation and caused 
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disruption by clapping or hitting the vegetation with a stick or pole.  I visited sites along the Grand Strand 

(i.e., from Waties Island SC to Bulls Bay SC) approximately once every two months, allowing for each 

site to be visited at least three times from October 2011 to April 2012.  Kiawah Island sites were visited 

once each from January 2012 through April 2012 by biologist Aaron Given, who used similar capture 

methods (pers. comm.).  Because Aaron and I visited our sites different numbers of times, I quantified the 

number of individuals at a site by calculating new captures per visit.  At sites I visited multiple times, I 

continued to catch new birds at approximately the same rate as the first visit, so standardizing the number 

of new captures by the number of visits to each site allowed our results to be comparable.     

Upon capture, I fitted each sparrow with a USFWS aluminum leg band.  Birds were then 

identified to species, with Nelson’s Sparrows identified to subspecies using a morphological key 

developed by Greenlaw and Woolfenden (2007).  For each sparrow, I recorded measurements of culmen 

length, wing length, tarsus length, and body weight.  Additionally, I assigned furcular and abdominal fat 

scores as well as pectoral muscle scores to each bird using a scoring system developed by Ray Danner 

(unpublished manuscript). Photographs of each bird were taken for confirmation of identification of 

species and subspecies.  All banding was performed with a sub-permit under Dr. Chris Hill (Federal 

Banding permit #22990) and with approval from IACUC (Coastal Carolina University, protocol 

#2011.02).   

Data Analysis 

 I compared the relative abundances of species between marshes and sites using a chi-square test 

(α=0.05).  I used two measures of abundance, relative abundance and new captures per visit, to describe 

sparrow assemblages in this study.  Both provide slightly different information and have different 

advantages and limitations.  Relative abundance can provide information about the possible habitat 

preference of a species compared to other species but is restrictive in that all values must add up to 100%.  

Use of relative abundance at sites with small sample sizes can skew the dataset since all sites in this 

project were given equal weight in analyses.  For example, I captured only four sparrows at the site I 

named Huntington South, all of which were Saltmarsh Sparrows.  The capture of a small number of only 



9 

 

Saltmarsh Sparrows resulted in a low capture rate for Saltmarsh Sparrows at this site, yet a high (100%) 

relative abundance.  The 100% relative abundance of Saltmarsh Sparrows heavily weights this site in 

favor of this species, even though only four were captured there during the entire winter, which is the 

smallest capture total of any of the 18 sites. Because the variance was so high at Huntington South and 

several other sites where a small number of sparrows were captured, it was difficult to predict 

assemblages based solely on relative abundance.  I determined the relative abundance for each species by 

calculating the percent of the total Ammodramus sparrow catch at a site that were Saltmarsh Sparrows, 

Seaside Sparrows, and Nelson’s Sparrows.  Other species were very rarely captured, and were excluded 

from analyses.  New captures per visit is not restrictive to a final sum (all values do not have to add up to 

100%), but appears to depend on site characteristics (whether or not the site is the only patch of high 

ground in a large swath of low marsh).  New captures per visit (hereafter referred to as “capture rate”) 

included individuals that were either un-banded or recaptures from previous years (i.e., any bird that was 

not a within-season recapture).  Within-season recaptures were not considered in this study because I 

wanted to obtain an estimate of the total abundance of birds at each site for the entire winter.  Marsh 

sparrows have high rates of within season site fidelity coupled with extremely low rates of movement 

between sites during the winter (Shaw 2012).  Because of the low rates of movement between high tide 

roost sites during the winter, counting a within-season recapture each time it was encountered would 

inflate the number of individuals at a banding site.   Examining both relative abundance and capture rate 

provided a more comprehensive picture of the relationship between habitat and species abundance.    

Model Building 

To build and test regression models, I randomly chose 12 of the 18 banding sites to build the 

models (“model-building sites”), with the remaining 6 sites (“test sites”) used to test the predictive ability 

of the models.  I constrained the choice of model-building and test sites so that each group included half 

northern sites (Waties Island to Cape Romain) and half southern (i.e., Kiawah Island) sites because 

previous work (Greenlaw and Rising 2007) had shown that relative abundances of these species varied 

with latitude on the Atlantic coast.  I divided my model-building sites and test sites unevenly (12:6) 
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because winter habitat requirements for the three sparrow species are unknown and I wanted to have as 

much information as possible to build the predictive models.  I built regression models to predict relative 

abundances of each species from habitat information, and in a second analysis built models to predict 

capture rates of each species from habitat information.  Each predictive model was built using a modified 

Regression with Empirical Variable Selection (“REVS”) method detailed by Goodenough et al. (2012).  I 

chose this technique because it has been shown to be a robust way to choose informative models from a 

large set of independent variables (Goodenough et al. 2012).  The final candidate models were compared 

using Akaike’s Information Criterion (AIC).     

In an attempt to avoid overfitting or producing an overly complex model, I modified the 

procedure to limit the maximum number of predictors in any one model to five; this should have allowed 

for inclusion of enough variables with predictive power in the final model while reducing the chance that 

an overly complex model would be produced.  Because of the small sample size relative to the number of 

predictor variables, I used AIC corrected for small sample size (AICc) for model selection.               

Assessing models that predict relative abundance 

After model building was complete, I applied the relative abundance regression models to habitat 

data at the six test sites to obtain a predicted relative abundance of each sparrow species at each site.   At 

each site, I then multiplied the relative abundance predicted by the habitat-driven model times the number 

of sparrows actually caught at that site – if the habitat based model predicted 20% Saltmarsh Sparrows at 

a site where I had captured 35 total sparrows, the model was considered to have predicted that 7 

Saltmarsh Sparrows would be caught at that site.  I constructed a null model for relative abundance by 

calculating the percent of the study-wide total catch that were Saltmarsh Sparrows, Seaside Sparrows, and 

Nelson’s Sparrows.  I then calculated the number of individuals of each species I would expect to find at a 

given site by multiplying those study-wide relative abundances times the total number of sparrows found 

at that site.  I compared the number of sparrows predicted under each model to the actual capture totals to 

obtain an error value.   I compared the errors of both the habitat-driven model and relative abundance null 

model using a one-tailed paired t-test (α=0.05) to determine if habitat-driven models performed 
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significantly better than null models (i.e., had a lower error rate).  For each species, I evaluated the 

performance of all top-ranked habitat-driven models (ΔAICc < 2).  I evaluated three Saltmarsh Sparrow 

models, two Seaside Sparrow models, and one Nelson’s Sparrow model.  

Assessing models that predict capture rate of each species 

In a separate analysis, I applied the capture rate regression models to predict the number of 

sparrows of each species captured at the six test sites, given the netting effort at each site.  I calculated the 

predicted number of individuals of each species at each site by multiplying the predicted capture rate from 

the habitat-driven model by the number of times I visited that site.  To construct a null model, I multiplied 

the study-wide capture rates of each species by the number of times each site was visited.  I compared the 

number of sparrows predicted under each model to the actual capture totals to obtain an error value.   I 

compared the mean errors of both the habitat-driven model and capture rate null model using a paired t-

test (α=0.05) to determine if the habitat-driven model performed better (i.e., had a lower error rate).  I 

evaluated the performance of all top-ranked habitat-driven models (ΔAICc < 2).  I evaluated three 

Saltmarsh Sparrow models, one Seaside Sparrow model, and one Nelson’s Sparrow model.   

Because the two sets of habitat-driven models for predicting relative abundance or capture rate 

performed either worse than or not significantly different from their respective null models for all three 

species at novel sites, yet relatively well at the model-building sites, I built separate habitat-driven models 

(one set for relative abundance, and one set for capture rate) from all 18 sites to determine if adding six 

additional sites to the model building process yielded any additional information regarding a meaningful 

relationship between habitat and relative abundance or capture rate.  A model built out of 18 sites 

including the same predictors as a model built from 12 sites would indicate that those predictors had a 

relationship to the sparrow data, which may have been strengthened by including additional sites in the 

model.  In addition, I further explored the data by plotting variables that were kept in both the 12- and 18-

site models against either relative abundance or capture rate.  I used these plots to visually explore 

whether the addition of the six sites increased the correlation coefficient (R
2
) or changed the direction of 

the relationship between the variables. 
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Results 

Sparrow Captures 

 I banded 298 sparrows at nine sites from Waties Island, SC to Cape Romain, SC and Kiawah 

Wildlife Biologist Aaron Given banded 152 sparrows at nine sites on Kiawah Island, SC for a total of 450 

sparrows used to investigate relationships with habitats.  Capture totals at all 18 sites combined were as 

follows: 236 (52%) Seaside, 126 (28%) Saltmarsh, and 88 (20%) Nelson’s Sparrows.  The relative 

abundances of the three species differed drastically among sites: Seaside and Saltmarsh relative 

abundance at individual sites ranged from 0-100%, while Nelson’s relative abundance ranged from 0-

84%.  Seasides were found at all but two sites, Nelson’s were found at all but three sites, and Saltmarsh 

Sparrows were found at all but five sites.  The number of individuals (not counting within season 

recaptures), capture rate, and relative abundances of each species recorded at each site for the entire 

season are presented in Table 2 and plotted in figures 2 and 3.   

Relative abundances of all three species differed across marshes (χ
2
 =122.3, df = 8, p < 0.0005).  

A much higher proportion of Saltmarsh Sparrows were found at North Inlet and Cape Romain marshes 

than at Waties, Huntington, and Kiawah Island marshes.  Seaside Sparrows made up a higher percentage 

of captures at Waties and Huntington marshes compared to other sites.  Nelson’s Sparrows had a much 

higher relative abundance at Kiawah Island marsh compared to the other four marshes. 

I also compared relative abundance within sites located in the same marsh.  Relative abundance 

of Seaside Sparrows did not differ between the two sites in Waties Marsh (χ
2
=0.11, df=1,  p > 0.3).  I did 

not test for differences in Saltmarsh or Nelson’s Sparrows due to low expected counts.  Likewise, I could 

not perform a chi-square test on the capture data on Huntington sites due to low expected values at 

Huntington South.  Relative abundances of Seaside and Saltmarsh Sparrows differed among sites in North 

Inlet (χ
2
=31.6, df=3, p<0.0005).  Saltmarsh Sparrows had a much lower relative abundance at the North 

Boundary Road site.  Saltmarsh Sparrow relative abundance was similar among the other three sites in 

North Inlet.  Conversely, Seaside Sparrows had a higher relative abundance at the North Boundary Road 
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site.  I did not perform a chi-square test comparing relative abundances at Kiawah due to low expected 

values of Seaside and Saltmarsh Sparrows at six out of the nine sites.     

Many of the birds that I captured at four sites (Waties North, Seaside Island, Clam Far, and Island 

1) were previously banded by Shaw (2012) during her 2010-2011 field seasons.  During 2011-2012, I re-

captured captured 28 Seaside, 18 Saltmarsh, and 4 Nelson’s Sparrows from Shaw (2012). This yielded an 

across-season return rate (the proportion of Shaw’s total number of birds captured again in this study) of 

24% for Seaside, 32% for Saltmarsh, and 21% for Nelson’s Sparrows.   

Habitat Characteristics 

Banding locations were either patches of high marsh surrounded by low marsh (i.e., hummock) or 

located along the upland border of the marsh, except Captain Sam’s River, where banding was performed 

in smooth cordgrass- (Spartina alterniflora) dominated low marsh at low tide.  The average area of high 

marsh hummocks from which birds were flushed on banding visits was 2634 ± 1444 m
2
.  Plant species 

most commonly found on these high marsh hummocks included bushy seaside tansy (Borrichia 

frutescens), needlegrass rush (Juncus roemerianus), sea lavender (Limonium carolinianum), glasswort 

(Salicornia sp.), marsh elder (Iva frutescens), saltgrass (Distichlis spicata), saltmeadow cordgrass 

(Spartina patens), S. alterniflora wrack, and turtleweed (Batis maritima) (Tables 3 and 4).  Other plant 

species encountered infrequently included fimbry (Fimbristylis sp.), Baccharis spp., and prickly pear 

(Opuntia sp). 

At each site, I quantified habitat types within a 400-m radius circle (total area 50.25 ha) centered 

on the banding site.  The composition of marsh landscapes at the 50-ha scale varied greatly among the 18 

sites.  The percentage of low marsh at banding sites ranged from 16-88%, high marsh 1-22%, open water 

0-47%, upland 0-54%, and beach/shell gravel 0-18% (Table 5). 

 I also measured habitat within a 70-m radius circle (total area of 15,365 m
2
 or 1.5 ha) centered on 

the banding site.  Habitat at this scale also varied among sites, with low marsh ranging from 0-79%, high 

marsh 6%-98%, open water 0-21%, upland 0-39%, and beach/shell gravel 0-25% (Table 6). 

GIS Accuracy 
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I compared the composition of each vegetation plot to its classification in GIS to provide a 

measure of digitization accuracy.  Because the locations of vegetation plots from four sites were lost from 

the GPS before they could be entered into the GIS, I was only able to compare ground and GIS 

classifications at 14 sites.  I compared a total of 630 locations at these 14 sites.   Ground classification at 

536 (85%) of these sites matched my GIS classification.  My GIS classification accuracy of 85% is 

comparable to other studies where GIS accuracy ranged from 60% to 94% (Stalmans et al. 2002; Petersen 

et al. 2005).  The most common mismatch between ground and GIS classification occurred in Salicornia-

dominated salt pannes where the GIS classified low marsh as high marsh (56%), and where the GIS 

classified high marsh as low marsh (32%).  Other misclassifications occurred less frequently and included 

classifying high marsh as upland (7%) or low marsh as upland (5%).  These later errors were most likely 

caused by shadows from trees on aerial photos overlapping with different land cover.   

Models to Predict Relative Abundance of Each Sparrow Species  

  The REVS model building procedure produced regression models relating relative abundance of 

all three species (separately) to habitat variables.  Because of ties in the model building process 

(Goodenough et al. 2012), different numbers of candidate models were produced for each species (25 for 

Saltmarsh, 16 for Seaside, and 8 for Nelson’s Sparrows).  I break the results down by species, starting 

with Saltmarsh Sparrows.  Additionally, I include the direction of each relationship (+ or -) in parentheses 

in the model description.   

The model building procedure generated three highly-supported (ΔAICc < 2) Saltmarsh Sparrow 

relative abundance habitat-driven models.  The “best” model (AICc=112.0, ΔAICc = 0.0), included (+) % 

S. alterniflora and (+) % low grass at the 50-ha scale and (-) % low grass at the 1.5-ha scale.  A second 

model, which included only (+) % S. alterniflora and (+) % low grass at the 50-ha scale, had almost as 

much support (AICc=112.4, ΔAICc = 0.4).  The other top-ranked model consisted of (+) % S. alterniflora, 

(+) % low grass, and (+) % open water at the 50-ha scale, and (-) % low grass at the 1.5-ha scale 

(AICc=113.7, ΔAICc = 1.7).  All other habitat-driven models for Saltmarsh Sparrow relative abundance 

had moderate to poor levels of support (ΔAICc > 2.0) (Table 7). 
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All three Saltmarsh Sparrow relative abundance habitat driven models significantly reduced mean 

error when compared with the relative abundance null model at the 12 model-building sites (Table 10).  

However, the habitat-driven models were not able to predict Saltmarsh Sparrow occurrence at new sites.  

All three relative abundance habitat models failed to improve upon the relative abundance null model 

when they were applied to the six test sites (Table 11).   

The model building procedure generated two habitat-driven models for Seaside Sparrow relative 

abundance that had a high-level of support.  The first model included (+) % wrack at the 1.5-ha scale 

(AICc=112.6, ΔAICc = 0.0), and the second (+) % wrack at the 1.5-ha scale and (-) % upland at the 50-ha 

scale (AICc=114.3, ΔAICc = 0.7).  All other habitat-driven models had moderate to poor levels of support 

(Table 8).  

The Seaside Sparrow relative abundance habitat-driven model with % wrack within 1.5 ha as a 

predictor estimated Seaside Sparrow abundance significantly better than the relative abundance null 

model at the 12 model-building sites, while the model with % wrack within 1.5 ha and % upland within 

50 ha did not differ significantly from the null model at those sites (Table 10).  The habitat-driven models 

were not able to predict Seaside Sparrow occurrence at new sites.  The habitat-driven model did not 

perform significantly better than the relative abundance null model when they were applied to data from 

the six test sites (Table 11). 

The model building procedure generated only one habitat-driven model predicting Nelson’s 

Sparrow relative abundance that met the criterion (ΔAICc < 2) for further consideration.  That model 

included (+) % upland and (-) % high grass at the 50-ha scale as predictors of Nelson’s Sparrow relative 

abundance.  The other habitat-driven models that were produced had moderate to poor levels of support 

(Table 9).  

The Nelson’s Sparrow habitat-driven model did not perform significantly better than the relative 

abundance null model at the 12 model-building sites (Table 10).  Additionally, the habitat-driven model 

was not able to predict Nelson’s Sparrow relative occurrence at new sites.  The habitat-driven model 
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predicting Nelson’s Sparrow relative abundance did not improve upon the null model at the six test sites 

compared to the null model (Table 11). 

Models To Predict Capture Rate   

The REVS procedure produced 5 models relating Saltmarsh Sparrow capture rates to habitat 

variables, 16 for Seaside Sparrows, and 6 for Nelson’s Sparrows.   There were three models with a high 

degree of support (ΔAICc < 2) for predicting Saltmarsh Sparrow capture rate.  The “best” habitat-driven 

model (AICc=52.0, ΔAICc=0.0) included (+) % low grass and (-) % upland within the 50-ha scale as 

predictors of Saltmarsh Sparrow capture rate.  The 2
nd

 best Saltmarsh model (AICc=52.9, ΔAICc=0.9) 

included (+) % low grass and (-) % upland within the 50-ha scale, but also included (-) % low grass and 

(+) % S. alterniflora within the 1.5-ha scale.  The 3
rd

 best model (AICc=53.0, ΔAICc=1.0) included (+) % 

low grass and (-) % upland within the 50-ha scale and (-) % low grass within the 1.5-ha scale.  All other 

habitat-driven models generated had considerably less support (AICc > 60.0, ΔAICc > 8.0) (Table 12). 

All three top-ranked Saltmarsh Sparrow capture rate habitat-based models performed 

significantly better than the capture rate null model at the 12 model-building sites (Table 15).  However, 

none of the top-ranked habitat-driven models were able to predict Saltmarsh Sparrow occurrence at new 

sites.  All three top-ranked Saltmarsh Sparrow capture rate habitat-driven models failed to improve upon 

the capture rate null model at the six test sites (Table 16).   

There was only one habitat-driven model with a high degree of support for predicting Seaside 

Sparrow capture rate.  That model (AICc=70.9, ΔAICc=0.0) contained (+) % high marsh within 50 ha as 

well as (+) % open water and (-) % upland within 1.5 ha as predictors.  All other models were either 

moderately or poorly supported (Table 13). 

The top-ranked Seaside Sparrow capture rate habitat-driven model did not perform significantly 

better than the null capture rate model at the 12 model-building sites (Table 15).  Additionally, the 

habitat-driven model was not able to predict Seaside Sparrow occurrence at new sites.  The Seaside 

Sparrow capture rate habitat-driven model performed worse than the capture rate null model at the six test 

sites (Table 16). 
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There was also a single model that had high support for predicting Nelson’s Sparrow capture rate.  

That model (AICc =85.3, ΔAICc = 0.7) consisted of (+) % high marsh and (-) % high grass within 50-ha 

as predictors.  All other models had less support (AICc >87.0,  ΔAICc > 2.0) (Table 14).   

The top-ranked Nelson’s Sparrow capture rate habitat-driven model failed to perform better than 

the null capture rate model at the 12 model-building sites (Table 15).  Additionally, the habitat-driven 

model was not able to predict Nelson’s Sparrow occurrence at new sites; it performed significantly worse 

than the null model at the six test sites (Table 16).          

Relative Abundance Model Building from all 18 sites 

The best 18-site Saltmarsh Sparrow model maintained % open water within 50 ha from the 12-

site model, but also added % high marsh within 1.5 ha as a predictor (AICc=176.8).  This 18-site habitat 

model had a significantly lower mean error than the null model (Table 17).  The addition of the six 

additional sites slightly increased the R
2
 value of the model, although the relationship was still weak and 

the scatter of the data was broad (Figure 4).   

The best 18-site model for predicting Seaside Sparrow relative abundance kept % upland within 

50 ha as a predictor, but not % wrack within 1.5 ha.  Instead, the 18-site model included % upland, % 

wrack, and inter-tidal creek length within 50 ha as well as % upland within 1.5-ha as predictors (AICc= 

171.7).  This habitat model did not perform significantly better than the null model.  The addition of the 

six additional sites did not affect the direction or magnitude of the relationship and even lowered the R
2
 

value upon visual exploration of the data plot (Figure 5).   

The Nelson’s Sparrow 18-site model was completely different from the 12-site model: the 18-site 

model had latitude, % open water and % woody shrubs within 50 ha and % low marsh within 1.5 ha 

(AICc=161.3) as predictors of relative abundance.  This model had a significantly lower mean error and 

was more accurate than the null at 16 out of 18 sites.  A second model, including the four variables listed 

above as well as % bare ground within 50 ha also fit the data significantly better than the null (Table 17).   

Capture Rate Model Building from all 18 sites 
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All the habitat models for Saltmarsh Sparrow capture rate built using data from 18 sites retained 

% low grass and % upland at the 50-ha scale as important predictors (Table 18).   Including six additional 

sites in model construction did not seem to affect the direction of the relationship with either % low grass 

or % upland within 50 ha, although it did reduce the R
2
 value of the model for both variables (Figs 6 and 

7).   

Both habitat models predicting Seaside Sparrow capture rate built from 18 sites kept % high 

marsh within 50 ha and % open water within 1.5 ha as predictors and fit the data significantly better than 

the null model (Table 18).  The addition of six sites seemingly weakened the relationship between Seaside 

Sparrow capture rate and % high marsh within 50 ha.  The addition of six sites did not greatly alter the 

relationship between Seaside Sparrow capture rate and % open water within 1.5 ha, although it did result 

in a slightly higher R
2
 value (Figs. 8 and 9). 

The habitat model predicting Nelson’s Sparrow capture rate built from 18 sites preserved % high 

grass within 50 ha as a predictor and did not differ from the null model in terms of model performance 

(Table 18).  The addition of six sites slightly increased the R
2
 value of the relationship between % high 

grass within 50 ha and Nelson’s capture rate (Fig. 10). 

Discussion 

The main findings of this study were: 1) Ammodramus marsh sparrow occurrence differed among 

18 wintering sites in South Carolina, 2) Habitat composition differed among the 18 sites, and 3) models 

built from habitat measured at two different scales failed to predict occurrence of Ammodramus marsh 

sparrows.    

Sparrow relative abundance differed by both marsh and site within the same marsh, sometimes 

dramatically.  One of the most interesting patterns was the low relative abundance of Nelson’s Sparrows 

at all of the northern marshes, yet the dominance of the species on Kiawah Island.  A likely reason for this 

pattern is the winter range of Nelson’s Sparrows.  Northern South Carolina is the northern portion of 

Nelson’s winter range, and the proportion of wintering Nelson’s along the Atlantic coast increases 

southward to northeast Florida (Greenlaw and Woolfenden 2007).  Conversely, Seaside Sparrow 
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abundance was higher in the more northerly sites in this study, although there is no evidence this is due to 

this species’ winter range:  Seaside Sparrows are found in the winter from North Carolina to the tip of 

Florida and along the Gulf Coast to Texas (Post and Greenlaw 2009).   

Four of my banding locations (Waties North, Seaside Island, Clam Far, and Island 1) were also 

used by Shaw (2012) in which she found differences in sparrow relative abundance among marshes and 

sites.  More specifically, Shaw found a higher proportion of Seaside Sparrows at Waties Island and a 

relatively higher proportion of Saltmarsh Sparrows at North Inlet.  I also found that Seaside Sparrows 

were more abundant at Waties and Saltmarsh Sparrows were more abundant at North Inlet (compared to 

Waties).  This pattern is still observed even after excluding year-to-year returners that may have been 

included in Shaw’s study.  I found similar patterns of abundance to Shaw (2012) at the Waties island 

sites.  However, I banded a slightly higher proportion of Saltmarsh Sparrows at Clam Far and a higher 

proportion of Seaside Sparrows at Island 1 than Shaw (2012).  The patterns of relative abundance 

between the two studies supports the idea that these patterns of abundance are stable within a marsh, with 

slightly more variation of sparrow assemblage occurring from year to year at individual banding sites.  

Furthermore, the exclusion of birds first banded by Shaw (2012) from my data when comparing the 

relative abundances between our studies indicates that the stability of the patterns observed is not due to 

strong winter site fidelity alone.  Other factors, such as habitat, social attraction, dominance behaviors, or 

arrival times of different species on the wintering grounds may be factors that contribute to the consistent 

patterns of relative abundance.      

My use of four of Shaw’s sites also gave me the opportunity to examine across-season fidelity at 

those four sites.  My results on across-season return rates of 24% for Seaside, 32% for Saltmarsh, and 

21% for Nelson’s Sparrows were much different from those found by Shaw who found return rates of 

43% for Seaside, 63% for Saltmarsh, and 14% for Nelson’s Sparrows (Shaw 2012).  My results for both 

Seaside and Saltmarsh Sparrow return rates were lower than Shaw’s yet higher than those found by 

another study on site fidelity in North Carolina, which found return rates of 11% for Seaside Sparrows 
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and 10% for Saltmarsh Sparrows (Winder et al. 2012).  However, my return rate of 21% for Nelson’s 

Sparrows is much higher than that found in either study (Winder et al. 2012; Shaw 2012). 

The intriguing result of this study is that even though both habitat composition and sparrow 

abundance differed among sites, habitat-driven models failed to predict sparrow abundance.  Several 

possible explanations exist as to why habitat could not be used to predict sparrow abundance.  One 

explanation is that habitat measurements that were not used in this study could be more reliable predictors 

of Ammodramus sparrow abundance and could improve model performance.  McClure et al. (2012) 

compared the performances of models built using only macrohabitat data (% cover of different landcover 

classes), models built using only microhabitat data (including basal area of trees, leaf litter depth, shrub 

layer thickness, and ground layer thickness), and models built from both macro- and micro- habitat data in 

predicting abundances of wintering passerines.  The authors found that the best models included both 

macro- and micro- habitat data as birds selected habitat patches based on both landscape-scale cues and 

small-scale characteristics including vegetation structure (McClure 2012).  There is evidence that, during 

the breeding season, both Saltmarsh and Seaside Sparrows select nest sites based on vegetation structure 

and composition.  Saltmarsh Sparrows nested in patches of marsh dominated by S. patens in which the 

vegetation was taller and denser than random plots (DiQuinzio et al. 2002; Gjerdrum et al. 2005).  Seaside 

Sparrows selected vegetation that was taller than either random plots or Saltmarsh Sparrow nesting plots, 

but was less dense than random plots. There is additional evidence that during the post-fledgling stage, 

Saltmarsh Sparrows use patches of marsh with taller S. alterniflora, presumably for the increased cover 

this habitat provides during foraging (Hill 2008).  Even though I quantified vegetation composition at 

each site, I did not include measurements of vegetation height or density in this study.  It is possible that 

marsh sparrows may be selecting habitat based on height and density, especially in high marsh roost sites: 

taller vegetation may help sparrows escape from rising waters during especially high tides, while denser 

vegetation could offer concealment from predators. 

I hypothesized that the largest scale at which marsh sparrows select habitat would be the largest 

recorded home range size for any of the three species, or 50 ha (Shriver et al. 2010).  However, it is 
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possible that broad-scale factors, such as marsh size and isolation, could have an effect on the 

distributions of Ammodramus marsh sparrows.  Positive associations to habitat area have been 

demonstrated in many species of marsh and grassland birds (Johnson and Igl 2001; Shriver et al. 2004; 

Craig 2008).  Both Seaside and Saltmarsh Sparrows are more abundant in larger marshes in the breeding 

range, with Seaside Sparrows being limited to larger marshes.  However, the minimum marsh size in 

which Seaside Sparrows have been detected during the breeding season is 67 ha, while the minimum 

marsh size in which Saltmarsh Sparrows have been detected during the breeding season is 10 ha (Benoit 

and Askins 2002).  All the marshes in the present study were larger than 67 ha (470 ha-12,110 ha), so all 

marshes theoretically met the minimum size requirements of both Seaside and Saltmarsh Sparrows.  

Additionally, none of the sparrow species had a relationship to distance of the banding site to nearest tree, 

which was used as a proxy for marsh size.  In this study, Seaside Sparrows were more abundant in the 

smaller marshes (Waties Island and Huntington Beach) while Saltmarsh Sparrows were more abundant in 

the two largest marshes (North Inlet and Cape Romain).  It may be possible that relationships between 

sparrow abundance and marsh size in the winter differ from those found in the breeding season and that 

marsh size affects patterns of sparrow relative abundance.  

Another possible explanation of the poor performance of the habitat-driven models is that marsh 

sparrow winter habitat selection could be dependent upon each site’s landscape context, and that 

predictors of sparrow occurrence could be different in different marshes.  Shriver et al. (2004) examined 

patterns of marsh bird occurrence in two separate landscapes: the Gulf of Maine and the more developed 

Long-Island sound.  The study found that predictors of Seaside and Saltmarsh Sparrow occurrence were 

different in each landscape.  Marsh size was a reliable predictor of both Seaside and Saltmarsh occurrence 

at study sites in the Gulf of Maine.  However, in Long Island sound, % cover of native vegetation was the 

most important predictor for Saltmarsh Sparrow occurrence, and there were no predictors of Seaside 

Sparrow occurrence (Shriver et al. 2004).  Alternatively, sparrows could have the same predictors 

between marshes, but the slope or direction of the relationship could be different among landscapes.  

Johnson and Igl (2001) studied the relationship between grassland bird species occurrence and patch size 
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in 9 different counties and found positive relationships between area and occurrence for some species in 

some counties but negative relationships between area and occurrence for those same species in different 

counties.  Flather and Sauer (1996) found that the relationship between neotropical migrants and degree 

of forest fragmentation differed between regions.     

Within my study, landscape context differed among marshes.  Kiawah Island was most notably 

different from the other sites; there are several golf courses and heavy residential development in close 

proximity to the marsh habitat.  Several banding sites, including Cinder Creek, River Course, and Marsh 

Island were less than 150 m from the nearest house.  There is a moderate degree of development 

surrounding Huntington Marsh (although nowhere near the degree at Kiawah): the marsh is part of a state 

park that is within 2 km of a major highway and the community of Murrell’s Inlet.  Waties Island is less 

developed, although it is still close (2 km) to the town of Cherry Grove.  Cape Romain and North Inlet 

were the least developed marshes included in the study and were relatively isolated from human 

development.  It is possible that within each of these landscapes, there are different predictors of 

abundance, as has been found in other studies of avian habitat use (Flather and Sauer 1996; Donovan et 

al. 1997; Johnson and Igl 2001; Shriver et al. 2004).  I used sites from different marshes when building 

models, so it is possible that differences in habitat selection based on different landscape context resulted 

in poor predictive ability.  It is possible that information from the six northern sites could have skewed the 

model so that it performed poorly at Kiawah sites, and vice versa.  The random selection of model 

building and testing sites resulted in no sites from Huntington Marsh being used to build the model, so 

lack of information from that marsh in the model could have led to poor predictions at those sites.  If 

landscape context does influence habitat selection in sparrows, it may be possible to predict occurrences 

of sparrows at different sites in the same marsh if the influence is at the marsh level.  The limitation of 

this study in investigating such a question is that I sampled few sites (<5) in each marsh (with the 

exception of Kiawah) and so it would be difficult to build and test a marsh-specific predictive model.  

However, even if marsh-specific models were successful in predicting sparrow occurrence, they would be 
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too narrow for their application to be useful to the conservation and management of Ammodramus 

sparrows. 

In addition to the habitat factors not measured in this study, patterns of sparrow abundance may 

also be driven by factors such as arrival time on the wintering grounds, social dominance by one species, 

or colonization history of a site.  Arrival time on wintering grounds may affect patterns of abundance if 

one species arrives on the wintering grounds before another, allowing it to select the best habitat and 

leaving other patches for species arriving later.  However, all three species of Ammodramus sparrows are 

similar in the timing of their fall migrations, with peak numbers of individuals arriving on wintering 

grounds in early-mid October (Greenlaw and Rising 1994; Post and Greenlaw 2009; Shriver et al. 2011).  

Since all three species arrive on the winter grounds around the same time, it is unlikely that one of the 

three species could fill a habitat before the arrival of the others.  Social dominance could also play a role; 

Seaside Sparrows are larger than Saltmarsh or Nelson’s sparrows and so it is possible Seaside sparrows 

could drive the other two species out of desirable habitat.  However, I visited some sites like Clam Far 

and Cape Romain where there were similar numbers of both Seaside and Saltmarsh Sparrows, indicating 

that neither Seaside nor Saltmarsh Sparrows were able to establish complete dominance.  Another site, 

Bass Creek 2, had similar numbers of Seaside and Nelson’s Sparrows.  It may also be possible that marsh 

sparrows colonized sites based on past conditions and that the current patterns of relative abundance 

result from a combination of this colonization history and winter site fidelity.    

The differences in wintering Ammodramus marsh sparrow assemblage among 18 sites in South 

Carolina indicate that sparrows are selecting habitat patches based on some factor.  However, the inability 

of habitat-driven models in this study to accurately predict sparrow occurrence, even though habitat 

differed among sites, indicates that the factors at the two scales measured in this study are not the sole 

factors influencing sparrow assemblage at winter sites.  The results of this study are still important, as 

they provide information on the sparrow assemblage and habitat composition around winter high tide 

roost sites: two subjects that have not been studied extensively.  However, it is still important to 

determine what factors, if any, are responsible for the differences in relative abundance observed among 



24 

 

sites.  Factors such as marsh size and isolation, landscape context, or sparrow behavior, which could 

affect wintering sparrow site selection, are likely to change as a result of continued coastal development 

and sea level rise.  Additional studies investigating these factors’ relationships to wintering Ammodramus 

sparrow assemblages will help provide additional information as to how changes to these factors as a 

result of development and sea level rise will affect wintering populations of sparrows.       
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Table 1: List of sites (listed north to south), including abbreviations, the marsh where each site was 

located, and geographic coordinates (listed in decimal degrees).  The abbreviations of model building 

sites are followed by a (M) and the names of test sites are followed by a (T).  

 

Site Abbreviation Site Name Marsh Latitude Longitude 

SSISLD (M) Seaside Island Waties Island 33.853 -78.572 

WATIESN (T) Waties North Waties Island 33.849 -78.588 

HBSPJ (T) Huntington Beach Jetty Huntington Marsh 33.518 -79.049 

HBSPS (T) Huntington Beach South Huntington Marsh 33.513 -79.057 

NBRD (M) North Boundary Road North Inlet 33.365 -79.171 

ISLD2 (M) Island 2 North Inlet 33.343 -79.167 

CLAMFR (M) Clam Far North Inlet 33.340 -79.183 

ISLD1 (M) Island 1 North Inlet 33.335 -79.173 

CRNWR (M) Cape Romain Cape Romain  33.054 -79.373 

MNTIDE1 (M) Moon Tide 1 Kiawah Marsh 32.632 -80.034 

MRSHISLD (T) Marsh Island Kiawah Marsh 32.625 -80.056 

CNDRCRK (M) Cinder Creek Kiawah Marsh 32.624 -80.042 

MRSHEDGE (M) Marsh Edge Kiawah Marsh 32.620 -80.069 

BASSCRK2 (M) Bass Creek 2 Kiawah Marsh 32.617 -80.029 

RIVCRSE (T) River Course Kiawah Marsh 32.615 -80.096 

INDPRK (M) Indigo Park Kiawah Marsh 32.614 -80.086 

KRBS (M) Kiawah River Bridge South Kiawah Marsh 32.603 -80.131 

CAPSAMSR (T) Captain Sam’s River Kiawah Marsh 32.583 -80.143 
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Table 2: Total numbers of individuals captured, relative abundances by site (listed north to south), and CPUE for each of three species of sparrow 

captured at 18 South Carolina salt marsh sites (listed from North to South) from October 2011 through April 2012.  The abbreviations of model 

building sites are followed by a (M) and the names of test sites are followed by a (T). 

 

   
Species 

 

 
Site Totals Seaside Sparrow  Saltmarsh Sparrow  Nelson’s Sparrow 

 

SITE NAME  Total Abundance 
Capture 

rate 
 Total Abundance 

Capture 
rate 

 Total Abundance 
Capture 

rate 
 

SSISLD (M) 24 23 96% 7.7  0 0% 0.0         1       4% 0.3  

WATIESN (T) 26 24 92% 4.0  0 0% 0.0          2        8% 0.3  

HBSPJ (T) 34 26 76% 4.3  4 12% 0.7            4 12% 0.7  

HBSPS (T) 4 0 0% 0.0          4 100% 1.0  0 0% 0.0  

NBRD (M) 27 27 100% 5.4  0 0% 0.0  0 0% 0.0  

ISLD2 (M) 14 8 57% 2.7  6 43% 2.0  0 0% 0.0  

CLAMFR (M) 96 38 40% 9.5  46 48% 11.5  12 13% 3.0  

ISLD1 (M) 36 21 58% 7.0  13 36% 4.3  2 6% 0.7  

CRNWR (M) 37 20 54% 6.7  16 43% 5.3  1 3% 0.3 
 

MNTIDE1 (M) 25 4 16% 4.0  0 0% 0.0  21 84% 21.0  

MRSHISLD (T) 10 6 60% 6.0  0 0% 0.0  4 40% 4.0  

CNDRCRK (M) 13 3 23% 3.0  1 8% 1.0  9 69% 9.0  

MRSHEDGE (M) 8 2 25% 2.0  3 38% 3.0  3 38% 3.0 
 

BASSCRK2 (M) 40 17 43% 17.0  7 18% 7.0  16 40% 16.0  

RIVCRSE (T) 14 1 7% 1.0  12 86% 12.0  1 7% 1.0  

INDPRK (M) 7 0 0% 0.0  5 71% 5.0  2 29% 2.0  

KRBS (M) 14 11 79% 11.0  2 14% 2.0  1 7% 1.0  

CAPSAMSR (T) 21 5 24% 5.0  7 33% 7.0  9 43% 9.0  
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Table 3:  Visually-estimated percent cover of vegetation at each site (listed north to south) within a 400-m radius of the banding site or 50.25ha.  

The “woody shrubs” category is a combination of Borrichia frutescens and Iva frutescens, “high grass” is a combination of Juncus roemerianus 

and Spartina patens and “low grass” is a combination of Salicornia spp., Distichlis spicata, Limonium carolinianum, and Batis maritima. The 

abbreviations of model building sites are followed by a (M) and the names of test sites are followed by a (T). 

 

 
% Vegetation Cover at 50 ha Scale 

 

Site Spartina 
alterniflora 

Bare Ground Wrack Woody Shrubs High Grass Low Grass 
 

SSISLD (M) 48% 35% 12% 4% 2% 0%  

WATIESN (T) 36% 28% 0% 4% 6% 24%  

HBSPJ (T) 31% 20%         7% 16% 11% 15%  

HBSPS (T) 28% 28% 6% 11% 6% 19%  

NBRD (M) 40% 27% 6% 4% 16% 8%  

ISLD2 (M) 51% 29% 0% 4% 11% 4%  

CLAMFR (M) 32% 28% 1% 5% 8% 24%  

ISLD1 (M) 53% 37% 4% 4% 0% 2%  

CRNWR (M) 43% 43% 1% 5% 0% 8%  

MNTIDE1 (M) 46% 43% 1% 2% 1% 8%  

MRSHISLD (T) 36% 31% 4% 8% 6% 15%  

CNDRCRK (M) 28% 16% 1% 38% 4% 13%  

MRSHEDGE (M) 49% 30% 2% 7% 3% 8%  

BASSCRK2 (M) 34% 27% 1% 20% 3% 15%  

RIVCRSE (T) 35% 35% 1% 9% 6% 15%  

INDPRK (M) 38% 24% 4% 9% 9% 17%  

KRBS (M) 46% 40% 3% 3% 5% 4%  

CAPSAMSR (T) 16% 18% 1% 26% 1% 37%  
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Table 4:  Visually-estimated percent cover of vegetation at each site (listed north to south) within a 70-m radius of the banding site or 1.54ha.  The 

“woody shrubs” category is a combination of Borrichia frutescens and Iva frutescens, “high grass” is a combination of Juncus roemerianus and 

Spartina patens and “low grass” is a combination of Salicornia spp., Distichlis spicata, Limonium carolinianum, and Batis maritima. The 

abbreviations of model building sites are followed by a (M) and the names of test sites are followed by a (T). 

 

 
% Vegetation Cover at 1.5 ha Scale 

 

Site Spartina 
alterniflora 

Bare Ground Wrack Woody Shrubs High Grass Low Grass 
 

SSISLD (M) 34% 33% 16% 11% 5% 0%  

WATIESN (T) 19% 25% 0% 4% 10% 41%  

HBSPJ (T) 18% 14%        9% 30% 5% 24%  

HBSPS (T) 0% 19% 10% 21% 13% 34%  

NBRD (M) 24% 22% 15% 11% 21% 7%  

ISLD2 (M) 16% 32% 0% 12% 27% 13%  

CLAMFR (M) 5% 17% 4% 16% 25% 34%  

ISLD1 (M) 38% 34% 11% 11% 0% 6%  

CRNWR (M) 24% 51% 4% 9% 0% 13%  

MNTIDE1 (M) 36% 35% 2% 1% 2% 24%  

MRSHISLD (T) 4% 38% 5% 12% 11% 30%  

CNDRCRK (M) 6% 18% 0% 60% 10% 7%  

MRSHEDGE (M) 42% 31% 2% 12% 0% 13%  

BASSCRK2 (M) 13% 26% 1% 46% 0% 14%  

RIVCRSE (T) 12% 26% 1% 22% 13% 26%  

INDPRK (M) 31% 25% 3% 18% 15% 8%  

KRBS (M) 40% 32% 8% 4% 6% 10%  

CAPSAMSR (T) 31% 30% 0% 19% 1% 20%  
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Table 5: Area of habitat cover types recorded at each site (listed north to south) within a 400-m radius of the banding site or 50.25 ha.  The unit of 

area is 1000m
2
 and percent cover of each habitat type is included in parentheses. The abbreviations of model building sites are followed by a (M) 

and the names of test sites are followed by a (T). 

 

 
% Habitat Cover at 50 ha Scale  

 

Site 
Low Marsh High Marsh Open Water Upland Beach 

 

SSISLD (M) 321 (64%) 13 (3%) 89 (18%) 75 (15%) 4 (1%)  

WATIESN (T) 249 (50%) 72 (14%) 26 (5%) 155 (31%) 0 (0%)  

HBSPJ (T) 184 (37%) 76 (15%)         21 (4%) 132 (26%) 89 (18%)  

HBSPS (T) 177 (35%) 68 (14%) 27 (5%) 206 (41%) 25 (5%)  

NBRD (M) 167 (33%) 103 (20%) 25 (5%) 207 (41%) 0 (0%)  

ISLD2 (M) 279 (55%) 38 (8%) 175 (35%) 10 (2%) 0 (0%)  

CLAMFR (M) 441 (88%) 62 (12%) 0 (0%) 0.09 (0%) 0 (0%)  

ISLD1 (M) 261 (52%) 4 (1%) 237 (47%) 0.21 (0%) 0 (0%)  

CRNWR (M) 261 (52%) 6 (1%) 205 (41%) 0 (0%) 30 (6%)  

MNTIDE1 (M) 289 (57%) 47 (9%) 28 (6%) 139 (28%) 0 (0%)  

MRSHISLD (T) 256 (51%) 37 (7%) 24 (5%) 185 (37%) 0 (0%)  

CNDRCRK (M) 120 (24%) 51 (10%) 61 (12%) 270 (54%) 0 (0%)  

MRSHEDGE (M) 281 (56%) 28 (6%) 18 (4%) 175 (35%) 0 (0%)  

BASSCRK2 (M) 220 (44%) 70 (14%) 95 (19%) 118 (24%) 0 (0%)  

RIVCRSE (T) 128 (25%) 78 (16%) 158 (31%) 139 (28%) 0 (0%)  

INDPRK (M) 182 (36%) 29 (6%) 30 (6%) 261 (52%) 0 (0%)  

KRBS (M) 292 (58%) 68 (14%) 89 (18%) 53 (11%) 0 (0%)  

CAPSAMSR (T) 827 (16%) 110 (22%) 151 (30%) 100 (20%) 60 (12%)  
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Table 6: Areas of habitat cover types recorded at each site (listed north to south) within a 70-m radius of the banding site or 1.54 ha.  The unit of 

area is 100m
2
 and percent cover of each habitat type is included in parentheses.  The abbreviations of model building sites are followed by a (M) 

and the names of test sites are followed by a (T). 

 

 
% Habitat Cover at 1.5 ha Scale   

 

Site 
Low Marsh High Marsh Open Water Upland Beach 

 

SSISLD (M) 121 (79%) 11 (7%) 20 (13%) 1 (1%) 0 (0%)  

WATIESN (T) 11 (70%) 22 (15%) 0 (0%) 24 (16%) 0 (0%)  

HBSPJ (T) 44 (29%) 89 (58%)         0 (0%) 21 (13%) 0 (0%)  

HBSPS (T) 0 (0%) 150 (98%) 0 (0%) 3 (2%) 0 (0%)  

NBRD (M) 48 (32%) 45 (29%) 0 (0%) 60 (39%) 0 (0%)  

ISLD2 (M) 100 (65%) 45 (29%) 0 (0%) 8 (5%) 0 (0%)  

CLAMFR (M) 35 (23%) 119 (77%) 0 (0%) 0 (0%) 0 (0%)  

ISLD1 (M) 111 (72%) 9 (6%) 32 (21%) 1 (1%) 0 (0%)  

CRNWR (M) 94 (61%) 13 (8%) 8 (5%) 0 (0%) 38 (25%)  

MNTIDE1 (M) 118 (77%) 33 (22%) 0 (0%) 3 (2%) 0 (0%)  

MRSHISLD (T) 58 (38%) 89 (58%) 0 (0%) 7 (4%) 0 (0%)  

CNDRCRK (M) 48 (31%) 56 (36%) 12 (8%) 38 (25%) 0 (0%)  

MRSHEDGE (M) 110 (72%) 21 (14%) 0 (0%) 22 (14%) 0 (0%)  

BASSCRK2 (M) 67 (44%) 71 (47%) 15 (10%) 0 (0%) 0 (0%)  

RIVCRSE (T) 50 (32%) 94 (61%) 0 (0%) 9 (6%) 0 (0%)  

INDPRK (M) 112 (73%) 38 (25%) 0 (0%) 4 (2%) 0 (0%)  

KRBS (M) 66 (43%) 61 (40%) 12 (8%) 14 (9%) 0 (0%)  

CAPSAMSR (T) 57 (37%) 77 (51%) 19 (13%) 0 (0%) 0 (0%)  
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Table 7: List of candidate habitat-driven predictive models for Saltmarsh Sparrow relative abundance and 

their corrected Akaike’s Information Criterion and Δ corrected Akaike’s Information Critierion  (AICc – 

lowest AICc).  Top models (in bold) had a ΔAICc < 2 and were tested against null models.  25 candidate 

models were produced. The large number of candidate models reflects “ties” in the variable-ranking 

process.  %Low Grass-50ha and % S. alterniflora were both ranked highly and had to be entered into 

separate 1-variable candidate models.  % Open Water 50-ha, % High Marsh 50-ha, % Wrack 50-ha, % 

Upland 1.5-ha, % High Grass 1.5-ha and 50-ha, were all given the same ranking, so all permutations of 

the variables had to be entered in separate candidate models. 

 

Saltmarsh Sparrow relative abundance habitat-driven models AICc ΔAICc 

%S. alterniflora 50-ha + %Low Grass 50-ha + %Low Grass 1.5-ha 112.0 0.0 

%S. alterniflora 50-ha + %Low Grass 50-ha 112.4 0.4 

%S. alterniflora 50-ha + %Low Grass 50-ha + %Low Grass 1.5-ha                       
+ %Open Water 50-ha 

113.7 1.7 

%Low Grass 50-ha 115.3 3.3 

%S. alterniflora 50-ha + %Low Grass 50-ha + %Low Grass 1.5-ha                       
+ %High Marsh 50-ha 

117.0 5.0 

%S. alterniflora 50-ha 117.5 5.5 

%S. alterniflora 50-ha + %Low Grass 50-ha + %Low Grass 1.5-ha                       
+ %Wrack 50-ha 

118.3 6.3 

%S. alterniflora 50-ha + %Low Grass 50-ha + %Low Grass 1.5-ha                       
+ %Upland 1.5-ha 

119.9 7.9 

%S. alterniflora 50-ha + %Low Grass 50-ha + %Low Grass 1.5-ha                        
+ %High Grass 1.5-ha 

120.4 8.4 

%S. alterniflora 50-ha + %Low Grass 50-ha + %Low Grass 1.5-ha                       
+ %High Grass 50-ha 

120.7 8.7 

%S. alterniflora 50-ha + %Low Grass 50-ha + %Low Grass 1.5-ha                        
+ %Open Water 50-ha + %High Marsh 50-ha 

125.5 13.5 

%S. alterniflora 50-ha + %Low Grass 50-ha + %Low Grass 1.5-ha                        
+ %Open Water 50-ha + %High Grass1.5-ha 

125.5 13.5 

%S. alterniflora 50-ha + %Low Grass 50-ha + %Low Grass 1.5-ha                        
+ % High Marsh 50-ha + %High Grass 50-ha 

126.5 14.5 

%S. alterniflora 50-ha + %Low Grass 50-ha + %Low Grass 1.5-ha                        
+ %Open Water 50-ha + %Wrack 50-ha 

126.6 14.6 

%S. alterniflora 50-ha + %Low Grass 50-ha + %Low Grass 1.5-ha                        
+ %Open Water 50-ha + %High Grass 50-ha 

126.6 14.6 
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Saltmarsh Sparrow relative abundance habitat-driven models 
(Cont’d) 

AICc ΔAICc 

%S. alterniflora 50-ha + %Low Grass 50-ha + %Low Grass 1.5-ha                        
+ % High Marsh 50-ha + %High Grass1.5-ha 

126.7 14.7 

%S. alterniflora 50-ha + %Low Grass 50-ha + %Low Grass 1.5-ha                        
+ %Upland 1.5-ha + %Open Water 50-ha 

126.8 14.8 

%S. alterniflora 50-ha + %Low Grass 50-ha + %Low Grass 1.5-ha                        
+ % High Marsh 50-ha + %Wrack 50-ha 

126.9 14.9 

%S. alterniflora 50-ha + %Low Grass 50-ha + %Low Grass 1.5-ha                        
+ % High Grass 50-ha + %High Grass1.5-ha 

129.6 17.6 

%S. alterniflora 50-ha + %Low Grass 50-ha + %Low Grass 1.5-ha                        
+ %Upland 1.5-ha + %High Marsh 50-ha 

130.0 18.0 

%S. alterniflora 50-ha + %Low Grass 50-ha + %Low Grass 1.5-ha                        
+ %Upland 1.5-ha + %Wrack 50-ha 

130.2 18.2 

%S. alterniflora 50-ha + %Low Grass 50-ha + %Low Grass 1.5-ha                        
+ % Wrack 50-ha + %High Grass1.5-ha 

130.6 18.6 

%S. alterniflora 50-ha + %Low Grass 50-ha + %Low Grass 1.5-ha                        
+ % Wrack 50-ha + %High Grass 50-ha 

131.4 19.4 

%S. alterniflora 50-ha + %Low Grass 50-ha + %Low Grass 1.5-ha                        
+ %Upland 1.5-ha + %High Grass1.5-ha 

131.8 19.8 

%S. alterniflora 50-ha + %Low Grass 50-ha + %Low Grass 1.5-ha                        
+ %Upland 1.5-ha + %High Grass 50-ha 

133.0 21.0 
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Table 8: List of candidate habitat-driven predictive models for Seaside Sparrow relative abundance and 

their corrected Akaike’s Information Criterion and Δ corrected Akaike’s Information Critierion (AICc – 

lowest AICc).  Top models (in bold) had a ΔAICc < 2 and were tested against null models.  The large 

number of candidate models (n=16) reflects “ties” in the variable-ranking process.  % Wrack 1.5-ha and 

% Upland 50-ha were given the same ranking; % Low Marsh 1.5-ha, % S. alterniflora 50-ha, and Creek 

Length 1.5-ha also tied with a separate ranking.  Therefore, all combinations of the variables were used 

for model building.   

 

Seaside Sparrow relative abundance habitat-driven models AICc ΔAICc 

%Wrack 1.5-ha 112.6 0.0 

%Wrack 1.5-ha + %Upland 50-ha 114.3 1.7 

%Upland 50-ha + %Wrack 1.5-ha + %Low Marsh 1.5-ha 118.0 5.4 

%Upland 50-ha + %S. alterniflora 50-ha + %Low Marsh 1.5-ha                     
+ Creek Length 1.5-ha                  

118.2 5.6 

%Upland 50-ha + %Wrack 1.5-ha + %S. alterniflora 50-ha 120.3 7.7 

%Upland 50-ha + %Wrack 1.5-ha + Creek Length 1.5-ha 120.6 8.0 

%Upland 50-ha + Creek Length 1.5-ha 121.3 8.7 

%Upland 50-ha 122.5 9.9 

%Upland 50-ha + %Wrack 1.5-ha + %S. alterniflora 50-ha                          
+ % Low Marsh 1.5-ha 

124.4 11.8 

%Upland 50-ha + %Low Marsh 1.5-ha + Creek Length 1.5-ha  124.5 11.9 

%Upland 50-ha + %Low Marsh 1.5-ha 126.7 14.1 

%Upland 50-ha + %S. alterniflora 50-ha  127.0 14.4 

%Upland 50-ha + %S. alterniflora 50-ha + Creek Length 1.5-ha                   127.5 14.9 

%Upland 50-ha + %S. alterniflora 50-ha + %Low Marsh 1.5-ha                   128.5 15.9 

%Upland 50-ha + %Wrack 1.5-ha + %S. alterniflora 50-ha                          
+ Creek Length 1.5-ha 

129.1 16.5 

%Upland 50-ha + %Wrack1.5ha + %S. alterniflora 50-ha                            
+ %Low Marsh 1.5-ha + Creek Length 1.5-ha                  

130.9 18.3 
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Table 9: List of candidate habitat-driven predictive models for Nelson’s Sparrow relative abundance and 

their corrected Akaike’s Information Criterion and Δ corrected Akaike’s Information Critierion (AICc – 

lowest AICc).  Top models (in bold) had a ΔAICc < 2 and were tested against null models.  Both % Low 

Grass 1.5-ha and % High Grass 50-ha were given the same ranking.  % Woody Shrub 50-ha, Latitude, 

and % Upland 1.5-ha were tied with a separate ranking, so all combinations of the variables were used for 

model building.   

 

Nelson’s Sparrow relative abundance habitat-driven models AICc ΔAICc 

%Upland 50-ha + %High Grass 50-ha + %Low Grass 1.5-ha 112.3 0.0 

%Upland 50-ha + %High Grass 50-ha 116.9 4.6 

%Upland 50-ha 117.6 5.3 

%Upland 50-ha + %High Grass 50-ha + %Low Grass 1.5-ha                      
+ %Low Grass 50-ha 

117.9 5.6 

%Upland 50-ha + %Low Grass 1.5-ha 118.6 6.3 

%Upland 50-ha + %High Grass 50-ha + %Low Grass 1.5-ha                      
+ %Low Grass 50-ha + %Woody Shrub 50-ha 

121.4 9.1 

%Upland 50-ha + %High Grass 50-ha + %Low Grass 1.5-ha                      
+ %Low Grass 50-ha + Latitude 

131.0 18.7 

%Upland 50-ha + %High Grass 50-ha + %Low Grass 1.5-ha                      
+ %Low Grass 50-ha + %Upland 1.5-ha 

131.0 18.7 
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Table 10: Comparison of habitat model performance vs. null model performance for predicting species’ relative abundances when back-fitted to 

the 12 model building sites. 

Model 
Total error of 
habitat-driven 

model 

Total error of 
null model 

Mean error of habitat-
driven model ± SE 

Mean error of 
null model ± SE 

t-value p 

 

Saltmarsh Sparrow Relative Abundance Habitat  
Model 

  
    

 

%S. alterniflora 50ha + %Low Grass 50ha +% Low 
Grass 1.5ha 

29.6 63.0 2.5  ±  0.7 5.3  ±  1.4 -2.0 0.04 
 

%S. alterniflora 50ha + %Low Grass 50 ha 40.1 63.0 3.3  ±  0.9 5.3  ±  1.4 -2.1 0.03 

 

%S. alterniflora 50ha + %Low Grass 50ha +% Open 
Water 50ha +% Low Grass 1.5ha 

23.6 63.0 2.0  ±  0.6 5.3  ±  1.4        -2.2 0.02 
 

        

Seaside Sparrow Relative Abundance Habitat 
Model 

      
 

%Wrack 1.5ha 36.8 64.9 3.1  ±  0.6 5.4  ±  1.2 -1.6 0.05 
 

%Wrack 1.5ha + %Upland 50ha 45.7 64.9 3.8  ±  1.5 5.4  ±  1.2 -1.2 0.12 
 

        

Nelson’s Sparrow Relative Abundance Habitat 
Model 

      
 

%Upland 50ha + %High Grass 50ha 56.5 64.9 4.7  ±  1.5 5.4  ±  1.2 -0.5 0.30 
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Table 11: Comparison of habitat-driven model performance vs. null model performance in predicting relative abundances of all three species at six 

test sites. 

Model 
Total error of 
habitat-driven 

model 

Total error of 
null model 

Mean error of habitat-
driven model ± SE 

Mean error of 
null model ± SE 

t-value p 

 

Saltmarsh Sparrow Relative Abundance Habitat  
Model 

  
    

 

%S. alterniflora 50ha + %Low Grass 50ha +% Low 
Grass 1.5ha 

45.2 28.0 7.5  ±  2.0 5.4  ±  1.2 1.5    0.10 
 

%S. alterniflora 50ha + %Low Grass 50 ha 40.1 28.0 6.7  ±  2.5 5.4  ±  1.2 1.0    0.19 

 

%S. alterniflora 50ha + %Low Grass 50ha +% Open 
Water 50ha +% Low Grass 1.5ha 

49.5 28.0 8.2  ±  2.6 5.4  ±  1.2 1.2    0.13 
 

        

Seaside Sparrow Relative Abundance Habitat 
Model 

      
 

%Wrack 1.5ha 28.9 34.2 4.8  ±  2.6 5.7  ±  1.5 -0.5    0.33 
 

%Wrack 1.5ha + %Upland 50ha 31.0 34.2 5.2  ±  2.7 5.7  ±  1.5 -0.3    0.4 
 

        

Nelson’s Sparrow Relative Abundance Habitat 
Model 

      
 

%Upland 50ha + %High Grass 50ha 12.6 15.4 2.1  ±  0.9 2.6  ±0.6 -0.5    0.33 
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Table 12: List of candidate habitat-driven predictive models for Saltmarsh Sparrow Capture Rate and 

their corrected Akaike’s Information Criterion and Δ corrected Akaike’s Information Critierion (AICc – 

lowest AICc).  Top models (in bold) had a ΔAICc < 2 and were tested against null models.  Only five 

candidate models were produced because no variables were given the same ranking so no different 

combinations of the variables needed to be included during model building. 

 

Saltmarsh Sparrow Capture Rate habitat-driven models AICc ΔAICc 

%Low Grass 50-ha + %Upland 50-ha 52.0 0.0 

%Low Grass 50-ha + %Upland 50-ha + %Low Grass 1.5-ha                       
+ %S. alterniflora 1.5-ha 

52.9 0.9 

%Low Grass 50-ha + %Upland 50-ha + %Low Grass 1.5-ha 53.1 1.1 

%Low Grass 50-ha 60.9 8.9 

%Low Grass 50-ha + %Upland 50-ha + %Low Grass 1.5-ha                       
+ %S. alterniflora 1.5-ha + %S. alterniflora 50-ha 

63.7 11.7 
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Table 13: List of candidate habitat-driven predictive models for Seaside Sparrow capture rate and their 

corrected Akaike’s Information Criterion and Δ corrected Akaike’s Information Critierion (AICc – lowest 

AICc).  Top models (in bold) had a ΔAICc < 2 and were tested against null models. % Upland 1.5-ha, % 

High Marsh 1.5-ha, % Low Marsh 1.5-ha, and % Open Water 1.5-ha all had the same ranking, so all 

combinations of those variables was included in the model building process. 

 

Seaside Sparrow Capture Rate habitat-driven models AICc ΔAICc 

%High Marsh 50-ha + %Open Water 1.5-ha + %Upland 1.5-ha 70.9 0.0 

%High Marsh 1.5-ha + %High Marsh 50-ha + %Open Water 1.5-ha           
+ %Upland 1.5-ha + %Low Marsh 1.5-ha  

74.0 3.1 

%High Marsh 1.5-ha + %Open Water 1.5-ha 74.6 3.7 

%High Marsh 1.5-ha + %Open Water 1.5-ha + %Upland 1.5-ha                 
+ %Low Marsh 1.5-ha 

76.2 5.3 

%High Marsh 1.5-ha  76.3 5.4 

%High Marsh 1.5-ha + %High Marsh 50-ha + %Open Water 1.5-ha 79.6 8.7 

%High Marsh 1.5-ha + %High Marsh 50-ha + %Open Water 1.5-ha           
+ %Upland 1.5-ha 

79.6 8.7 

%High Marsh 1.5-ha + %Upland 1.5-ha 79.9 9.0 

%High Marsh 1.5-ha + %Open Water 1.5-ha + %Upland 1.5-ha 80.4 9.5 

%High Marsh 1.5-ha + %Open Water 1.5-ha + %Low Marsh 1.5-ha 80.8 9.9 

%High Marsh 1.5-ha + %High Marsh 50-ha 81.0 10.1 

%High Marsh 1.5-ha + %Low Marsh 1.5-ha 81.0 10.1 

%High Marsh 1.5-ha + %Upland 1.5-ha + %Low Marsh 1.5-ha 81.7 10.9 

%High Marsh 1.5-ha + %High Marsh 50-ha + %Upland 1.5-ha  83.0 12.1 

%High Marsh 1.5-ha + %High Marsh 50-ha + %Low Marsh 1.5-ha 87.2 16.3 

%High Marsh 1.5-ha + %High Marsh 50-ha + %Open Water 1.5-ha           
+ %Low Marsh 1.5-ha 

87.9 17.0 
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Table 14: List of candidate habitat-driven predictive models for Nelson’s Sparrow capture rate and their 

corrected Akaike’s Information Criterion and Δ corrected Akaike’s Information Critierion (AICc – lowest 

AICc).  Top models (in bold) had a ΔAICc < 2 and were tested against null models.  % Low Marsh 1.5-ha 

and % Low Grass 1.5-ha were given the same rating and so all combinations of the two variables was 

included in the model building process.   

 

Nelson’s Sparrow Capture Rate habitat-driven models AICc ΔAICc 

%High Grass 50-ha + %High Marsh 50-ha 85.3 0.0 

%High Grass 50-ha 87.1 2.5 

%High Grass 50-ha + %High Marsh 50-ha + %Low Marsh 1.5-ha 89.3 4.7 

%High Grass 50-ha + %High Marsh 50-ha + % Low Grass 1.5-ha  90.2 5.6 

%High Grass 50-ha + %High Marsh 50-ha + %Low Marsh 1.5-ha               
+ %Low Grass 1.5-ha + %S. alterniflora 1.5-ha 

93.0 8.4 

%High Grass 50-ha + %High Marsh 50-ha + %Low Marsh 1.5-ha                
+ %Low Grass 1.5-ha                    

94.9 10.4 
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Table 15: Comparison of habitat model performance vs. null model performance for predicting species’ capture rates when back-fitted to the 12 

model building sites. 

Model 
Total error of 
habitat-driven 

model 

Total error of 
null model 

Mean error of habitat-
driven model ± SE 

Mean error of 
null model ± SE 

t-value p 

 

Saltmarsh Sparrow Capture Rate Habitat  Model 
  

    
 

%Low Grass 50ha + %Upland 50ha 23.8 86.0 2.0  ±  0.5 7.2  ±  2.6    -1.9     0.04 
 

%Low Grass 50ha + %Upland 50ha + %Low Grass 
1.5ha + %S. alterniflora1.5ha 

10.3 86.0 0.9  ±  0.2 7.2  ±  2.6    -2.4     0.02 

 

%Low Grass 50ha + %Upland 50ha + %Low Grass 
1.5ha 

18.8 86.0 1.6  ±  0.4 7.2  ±  2.6    -2.1     0.03 
 

        

Seaside Sparrow Capture Rate Habitat Model       
 

%High Marsh 50ha + %Open Water 1.5ha + %Upland 
1.5ha 

38.9 66.7 3.2  ±  0.91 5.6  ±  1.1    -1.4     0.10 
 

        

Nelson’s Sparrow Capture Rate Habitat Model       
 

%High Marsh 50ha + %High Grass 50ha  102.2 81.7 7.3  ±  1.2 6.8  ±  1.6    0.3    0.40  
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Table 16: Comparison of habitat model performance vs. null model performance in predicting capture rates of all three species at six test sites. 

Model 
Total error of 
habitat-driven 

model 

Total error of 
null model 

Mean error of habitat-
driven model ± SE 

Mean error of 
null model ± SE 

t-value p 

 

Saltmarsh Sparrow Capture Rate Habitat  Model 
  

    
 

%Low Grass 50ha + %Upland 50ha 123.6 66.1 20.6  ±  7.8 11.0  ±  3.1 1.9 0.06 
 

%Low Grass 50ha + %Upland 50ha + %Low Grass 
1.5ha + %S. alterniflora1.5ha 

96.7 66.1 16.1  ±  6.5 11.0  ±  3.1 1.2 0.15 

 

%Low Grass 50ha + %Upland 50ha + %Low Grass 
1.5ha 

99.7 66.1 16.6   ±  5.9 11.0  ±  3.1 1.7 0.08 
 

        

Seaside Sparrow Capture Rate Habitat Model       
 

%High Marsh 50ha + %Open Water 1.5ha + 
%Upland 1.5ha 

101.4 60.4 16.9  ±  5.0 10.1  ±  3.9 2.7 0.02 
 

        

Nelson’s Sparrow Capture Rate Habitat Model       
 

%High Marsh 50ha + %High Grass 50ha  126.5 43.8 21.1  ±  7.3 7.3  ±  2.0 2.4 0.03  
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Table 17: Comparison of habitat model performance vs. null model performance for predicting species’ relative abundances when all 18 sites were 

used to build the predictive model. 

Model 
Total error of 

predictive 
model 

Total error of 
null model 

Mean error of predictive 
model ± SE 

Mean error of 
null model ± SE 

t-value p 

 

Saltmarsh Sparrow Relative Abundance Habitat  
Model 

  
    

 

%High Marsh 1.5ha + %Open Water 50ha 59.4 91.3 3.3  ±  0.5 5.1  ±1.0 -1.7 0.05 
 

        

Seaside Sparrow Relative Abundance Habitat 
Model 

      
 

%Upland 50ha + %Upland 1.5ha + %Wrack 50ha 101.3 99.1 5.6  ±  1.7 5.5  ±  1.0 0.1 0.47 
 

%Upland 50ha + %Upland 1.5ha + %Wrack 50ha + 
Creek length 50ha 

78.6 99.1 4.4  ±  1.7 5.5  ±  1.0 -0.7 0.25 
 

        

Nelson’s Sparrow Relative Abundance Habitat 
Model 

      
 

Latitude + %Open Water 50ha + %Wood Shrub 
50ha + %Low Marsh 1.5ha  

34.1 78.4 1.9  ±  0.6 4.4  ±  0.9 -3.9 0.0005 
 

Latitude + %Open Water 50ha + %Wood Shrub 
50ha + %Low Marsh 1.5ha + %Bare Ground 50ha 

39.4 78.4 2.2  ±  0.6 4.4  ±0.9 -3.2     0.003 
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Table 18: Comparison of habitat model performance vs. null model performance for predicting species’ capture rates when all 18 sites were used 

to build the predictive model. 

Model 
Total error of 

predictive 
model 

Total error of 
null model 

Mean error of predictive 
model ± SE 

Mean error of 
null model ± SE 

t-value p 

 

Saltmarsh Sparrow Capture Rate Habitat  Model 
  

    
 

%Low Grass 50ha + %Upland 50ha + Latitude + 
%Woody Shrub 50ha + % Woody Shrub 1.5ha 

66.0 135.8 3.7  ±  0.7 7.5  ±  2.0 -2.2 0.02 

 

%Low Grass 50ha + %Upland 50ha + Latitude 75.1 135.8 4.2  ±  1.0 7.5  ±  2.0 -2.7 0.007 

 

%Low Grass 50ha + %Upland 50ha 112.8 135.8 6.3  ±  1.8 7.5  ±  2.0 -0.8 0.23 
 

        

Seaside Sparrow Capture Rate Habitat Model       
 

%Low Marsh 50ha + %Open Water 1.5ha + %High 
Marsh 50ha 

77.8 110.5 4.3  ±  0.8 6.1  ±  1.3 -1.8 0.05 

 

%Low Marsh 50ha + %Open Water 1.5ha + %High 
Marsh 50ha + %Wrack 1.5ha 

76.0 110.5 4.2  ±  0.9 6.1  ±  1.3 -1.9      0.04 
 

        

Nelson’s Sparrow Capture Rate Habitat Model       
 

Latitude + %High Grass 50ha 111.3 109.0 6.2  ±  1.1 6.1  ±1.2 0.1      0.56  

        

 

 

 

 



47 

 

 

Figure 1: Map of South Carolina showing the approximate locations and distribution of marshes used in 

this study.  

Waties Island 
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Figure 2: Ternary plot comparing the relative abundances (%) of Seaside (SESP), Saltmarsh (SALS), and 

Nelson’s (NESP) sparrows at the five study marshes.  The relative abundance of Seaside Sparrows 

decreases from top to bottom along the right axis.  The relative abundance of Saltmarsh Sparrows 

decreases from right to left along the bottom axis, and the relative abundance of Nelson’s Sparrows 

decreases from bottom to top along the left axis.   
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Figure 3: Ternary plot comparing the relative abundances (%) of Seaside (SESP), Saltmarsh (SALS), and 

Nelson’s (NESP) sparrows among all 18 sites.  All sites are labeled with their abbreviation.  Waties Sites 

are represented by circles, Huntington by squares, North Inlet by diamonds, Cape Romain by a triangle, 

and Kiawah by upside down triangles.  The relative abundance of Seaside Sparrows decreases from top to 

bottom along the right axis.  The relative abundance of Saltmarsh Sparrows decreases from right to left 

along the bottom axis, and the relative abundance of Nelson’s Sparrows decreases from bottom to top 

along the left axis.   
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Figure 4: Comparison the relationship between Saltmarsh Sparrow relative abundance and % cover of 

open water within 50-ha at A) the 12 model building sites and the six testing sites, and B) all 18 sites. The 

solid line indicates the line of best fit for model building sites while the dashed line is the line of best fit 

for testing sites.  Best fit lines are meant to show relationships, but do not indicate significance. The R
2
 of 

each relationship is also shown. 
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Figure 5: Comparison of the relationship between Seaside Sparrow relative abundance and % cover of 

upland within 50-ha at A) the 12 model building sites and the six testing sites, and B) all 18 sites.  The 

solid line indicates the line of best fit for model building sites while the dashed line is the line of best fit 

for testing sites.  Best fit lines are meant to show relationships, but do not indicate significance. The R
2
 of 

each relationship is also shown. 
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Figure 6: Comparison of the relationship between Saltmarsh Sparrow capture rate and % cover of low 

grass within 50-ha at A) the 12 model building sites and the six testing sites, and B) all 18 sites.  The solid 

line indicates the line of best fit for model building sites while the dashed line is the line of best fit for 

testing sites.  Best fit lines are meant to show relationships, but do not indicate significance. The R
2
 of 

each relationship is also shown. 
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Figure 7: Comparison of the relationship between Saltmarsh Sparrow capture rate and % cover of upland 

within 50-ha at A) the 12 model building sites and the six testing sites, and B) all 18 sites.  The solid line 

indicates the line of best fit for model building sites while the dashed line is the line of best fit for testing 

sites.  Best fit lines are meant to show relationships, but do not indicate significance.  The R
2
 of each 

relationship is also shown. 
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Figure 8: Comparison of the relationship between Seaside Sparrow capture rate and % cover of high 

marsh within 50-ha at A) the 12 model building sites and the six testing sites, and B) all 18 sites.  The 

solid line indicates the line of best fit for model building sites while the dashed line is the line of best fit 

for testing sites.  Best fit lines are meant to show relationships, but do not indicate significance.  The R
2
 of 

each relationship is also shown. 
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Figure 9: Comparison the relationship between Seaside Sparrow capture rate and % cover of open water 

within 1.5-ha at A) the 12 model building sites and the six testing sites, and B) all 18 sites.  The solid line 

indicates the line of best fit for model building sites while the dashed line is the line of best fit for testing 

sites.  Best fit lines are meant to show relationships, but do not indicate significance.  The R
2
 of each 

relationship is also shown. 
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Figure 10: Comparison of the relationship between Nelson’s Sparrow capture rate and % cover of high 

grass within 50-ha at A) the 12 model building sites and the six testing sites, and B) all 18 sites.  The solid 

line indicates the line of best fit for model building sites while the dashed line is the line of best fit for 

testing sites.  Best fit lines are meant to show relationships, but do not indicate significance.  The R
2
 of 

each relationship is also shown. 
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Figure 11:  Visual comparison of relative abundances of newly banded birds (excluding year-to-year 

returns) found in A) the present study, and B) Shaw 2012, which occurred from 2010-2011 at shared 

study marsh.
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Figure 12: Comparison of relative abundances of newly banded birds (excluding year-to-year returns) 

found in A) the present study, and B) Shaw 2012, which occurred from 2010-2011 at shared study sites. 
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