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Abstract 

National Marine Fisheries Service (NMFS) stock assessment reports describe two 

coastal and two estuarine bottlenose dolphin stocks that utilize the waters of northern 

South Carolina (Waring et al. 2014), but coastal data from this area are lacking.  Photo-

ID mark-recapture surveys were conducted from 2013-2015 along two 50 km coastal 

transects centered on Murrells Inlet, SC; and from 2014-2015 along two 50 km transects 

covering both coastal and estuarine waters centered on Little River, SC.  Capture 

histories of marked individuals were used to estimate abundance and, in conjunction with 

neighboring catalog comparisons, infer movements, residency patterns, and stock 

membership.  Local abundance estimates derived from the Markovian Mt model (MARK 

6.2) varied seasonally and inter-annually.  The most reliable abundance estimates are 

from the 2013 and 2014 summers (371 and 1441, CV 0.17 and 0.14, respectively).  Lack 

of recaptures and low distinctive rates caused an upward bias for estimates in the other 

seasons.  Decreased winter abundance was reflected in our data by a 2-fold decrease in 

sightings-per-unit-effort (SPUE) from summer to winter.  The fall migratory peak 

attributed to the Southern Migratory Coastal Stock was reflected by a 2-fold increase in 

SPUE between summer and fall.  A likely shift in stock composition occurred between 

summer and fall given the lack of recaptures.  Members of the Northern South Carolina 

Estuarine System Stock were sighted in coastal waters as far north as Murrell’s Inlet, 

supporting NMFS definitions; but several members of the Southern North Carolina 

Estuarine System Stock were sighted in coastal waters 70 km south of their currently 

defined southern boundary, potentially warranting a revision.  Dorsal fin matches among 

several catalogs indicate that multiple stocks overlap in northern South Carolina and that 

an undefined coastal stock occurs from southern North Carolina to northern South 

Carolina, possibly as far north as Cape Lookout, NC and as far south as Charleston, SC in 

the summer. 
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Preface 

This thesis is divided into three chapters.  The first chapter reviews literature on 

bottlenose dolphins (Tursiops truncatus) on the US east coast and mark-recapture 

methodology.  The second chapter discusses bottlenose dolphins off the northern South 

Carolina coast.  Finally, the third chapter expands to an additional survey area on the 

border with North Carolina. 
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Chapter 1 – Literature Review 

Coastal Bottlenose Dolphin Stocks 

Bottlenose dolphins (Tursiops truncatus) are found in tropical and temperate 

latitudes worldwide (Reeves et al. 2002).  In the western North Atlantic Ocean, 

bottlenose dolphins are divided into two morphotypes:  offshore and coastal (Blaylock et 

al. 1995, Rosel et al. 2011, Waring et al. 2015) and are federally protected under the 

Marine Mammal Protection Act (MMPA, 16 U.S.C. §1361 et seq.).  The coastal 

morphotype is considered “depleted” (MMPA, 16 U.S.C. §1362) due to a large die-off in 

1987/1988 (Scott et al. 1988). 

Since the 1987/88 die-off, scientific efforts were focused on examining bottlenose 

dolphin stock structure and seasonal movements (Hohn 1997, Waring et al. 1999, Waring 

et al. 2000, Waring et al. 2001).  Scott et al. (1988) proposed a single stock of coastal 

migratory bottlenose dolphins ranging from New Jersey to central Florida based on the 

temporal and geographic pattern of strandings during the 1987/88 epizootic.  An 

alternative hypothesis included the presence of several migratory stocks and/or several 

resident stocks (Hohn 1997).  McLellan et al. (2002) suggested the presence of more than 

one stock based on examinations of long-term stranding records for the entire US east 

coast.  In a genetic study, Rosel et al. (2009) found at least 5 distinct populations in the 

coastal and estuarine waters between New Jersey and northern Florida. 
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Our understanding of bottlenose dolphin stocks has evolved over recent years.  

From 2002 to 2007, seven management units were recognized as follows:  the Northern 

Migratory (NMU), the Northern North Carolina (NNCMU), the Southern North Carolina 

(SNCMU), the South Carolina (SCMU), the Georgia (GAMU), the Northern Florida 

(NFLMU), and the Central Florida (CFLMU) management units (Waring et al. 2002, 

Waring et al. 2007).  The SNCMU ranged from Cape Lookout (Waring et al. 2007) as far 

south as Murrell’s Inlet, SC and the SCMU ranged from Murrell’s Inlet to the Savannah 

River at the SC/GA border (Urian et al. 1999, McFee et al. 2006).  The proposed 

management units were listed as depleted due to the lack of baseline data for each 

management unit and the high mortality rates in fishing gear (Waring et al. 2002, Waring 

et al. 2007). 

In 2008 and 2009 the management units were listed as stocks (Waring et al. 

2009a, Waring et al. 2009b).  The Southern Migratory Coastal Stock (SM) was defined in 

2008 as coastal dolphins migrating from North Carolina to central Florida (Waring et al. 

2009a).  The Northern North Carolina and the Southern North Carolina management 

units were redefined to include only estuarine dolphins and renamed as Northern North 

Carolina Estuarine System Stock (NNCESS) and Southern North Carolina Estuarine 

System Stock (SNCESS) respectively (Waring et al. 2014).  In 2010 the South Carolina 

and the Georgia management units were redefined and combined into one stock, the 

South Carolina/Georgia Coastal Stock (SC/GA) (Waring et al. 2011). 

Currently, the National Marine Fisheries Service (NMFS) recognizes eleven 

estuarine stocks and five coastal stocks including in the latter:  the Northern Migratory 

(NM), the Southern Migratory (SM), the South Carolina/Georgia (SC/GA), the Northern 
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Florida (NFL), and the Central Florida (CFL) coastal stocks (Waring et al. 2015).  These 

stocks recently suffered from another disease outbreak that killed over 1,800 dolphins 

between the years of 2013 and 2015 (NMFS 2015) and are still considered depleted under 

the MMPA (Waring et al. 2014).  Under the MMPA, depleted stocks are considered 

strategic and require current information to calculate and report the potential biological 

removal (PBR) (MMPA, 16 U.S.C. §1386) in the form of stock assessment reports.  PBR 

is based on estimates of abundance, a maximum rate of increase, and a fixed recovery 

factor (MMPA, 16 U.S.C. §1362). 

Stock assessment reports (SARs) prepared for bottlenose dolphins have been 

typically based on abundance estimates derived from stratified aerial surveys.  Sightings 

from these surveys were attributed to the different stocks based on their geographical 

location.  Yet, according to the latest SAR “[t]he spatial extent of these [coastal] stocks, 

their potential seasonal movements, and their relationship with estuarine stocks are 

poorly understood” (Waring et al. 2014).  Consequently, current abundance estimates for 

coastal stocks may be biased by the unintentional inclusion of sightings from multiple 

stocks in their calculations. 

Understanding the boundaries of each dolphin stock, along with potential seasonal 

movements and stock overlap are crucial steps to appropriate management of activities 

that may incidentally take dolphins such as fishery bycatch and ship strikes.  When stock 

boundaries are defined based on the best available data, survey areas can be properly 

designated and population parameters can be estimated with less bias.  The northern 

boundary of the Northern Migratory stock is well defined given that their summer range 

is not shared with any other stock (coastal or otherwise).  However, due to the high 
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potential for overlap with estuarine and/or coastal stocks, the boundaries for the other 

four coastal stocks are rather artificially defined. 

Bottlenose dolphin stocks off northern South Carolina 

Currently four stocks are described to inhabit coastal water of northern South 

Carolina for at least part of the year:  two estuarine and two coastal (Waring et al. 2014).  

The estuarine stocks are the Northern South Carolina Estuarine System Stock (NSCESS) 

and the Southern North Carolina Estuarine System Stock (SNCESS), both described to 

occur in nearshore coastal waters.  Coastal stocks include the Southern Migratory Coastal 

Stock (SM), and the South Carolina/Georgia Coastal Stock (SC/GA). 

The Northern South Carolina Estuarine System Stock (NSCESS) was recently 

described in 2013 as dolphins inhabiting estuarine and nearshore coastal waters (up to 1 

km offshore) from Murrell’s Inlet to Prince Inlet (SC) (Waring et al. 2014).  Its northern 

boundary is separated from the southern boundary of the SNCESS by a 70 km stretch of 

sandy beaches with no connections to the Intracoastal Waterway.  Population size for this 

entire stock is unknown (Waring et al. 2014), however Brusa (2012) estimated a 

population of 84 dolphins for the North Inlet-Winyah Bay National Estuarine Research 

Reserve portion of the stock in 2011-2012. 

The Southern North Carolina Estuarine System Stock (SNCESS) is defined as 

dolphins that inhabit both estuarine and nearshore coastal waters (< 3 km from shore) 

from the southern Pamlico Sound to the Little River Inlet at the North Carolina/South 

Carolina border (Waring et al. 2014).  Based on satellite tag telemetry, freeze-brand tags, 

and long term photo-identification studies, these dolphins undertake small seasonal 

migrations spending winters south of New River and summers between Cape Fear and 
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Cape Lookout, including parts of southern Pamlico Sound (Waring et al. 2014).  

According to stock assessment reports, this stock overlaps with the SM coastal stock 

between late fall and spring in coastal waters (Waring et al. 2014). 

The Southern Migratory Coastal Stock (SM) has the least understood distribution 

(Waring et al. 2014).  Stable isotope data suggest this stock occurs between southern 

North Carolina and Georgia, overlapping with both estuarine and coastal stocks along its 

range, including the SC/GA coastal stock (Waring et al. 2014).  Limited satellite tag data 

indicate that these dolphins stay in North Carolina during the summer and fall, migrating 

as far south as northern Florida for the winter and returning to North Carolina in the 

spring (Waring et al. 2014).  However, other studies suggest that their southern migration 

starts in the fall (McFee et al. 2006, Speakman et al. 2010, Young (unpublished data)). 

McFee et al. (2006) observed a significant increase in neonate bottlenose dolphin 

strandings during the fall and spring between the years of 1997 and 2003 in South 

Carolina.  Interestingly, neonate strandings were higher only in the fall for the northern 

portion of the state from Little River to Murrell’s Inlet (McFee et al. 2006).  This trend is 

consistent with transect surveys that have shown an influx of dolphins in October and 

November (1995-1997) for northern SC (Young and Peace 1999) and an influx of 

transient dolphins in November and December (2005-2006) for the Charleston area 

(Speakman et al. 2010).  Limited photo-identification analysis from this influx has 

revealed matches ranging from Wilmington, NC (Speakman et al. 2010, Young 

(unpublished data)), to Jacksonville, FL (Speakman et al. 2010). 

The South Carolina/Georgia Coastal Stock (SC/GA) is defined as dolphins 

occupying coastal waters up to 100 m deep from the North Carolina/South Carolina 
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border to the Georgia/Florida border and it is based on the presence of dolphins in coastal 

waters both in SC and GA during the summer months when the SM stock is presumably 

found north of Cape Lookout (Waring et al. 2014).  The presence of coastal dolphins in 

South Carolina is supported by summer (Waring et al. 2014) and winter (Torres et al. 

2005) aerial surveys and by long-term photo-identification studies primarily in the 

Charleston Harbor area. 

Zolman et al. (2002) identified the presence of transients and seasonal residents 

that were not part of the estuarine population.  Speakman et al. (2006) described an 

estuarine and a coastal dolphin population near the Charleston Harbor.  Coastal dolphins 

were noted to follow shrimp boats and to be restricted to the coastal area or the open 

areas of the Charleston Harbor associated with shrimp boat traffic (Speakman et al. 

2006).  In a photo-identification study aboard South Carolina Department of Natural 

Resources (SCDNR) trawlers, no dolphins previously known to associate with shrimp 

boats were matched to members of the Charleston or the Northern Georgia estuarine 

stocks (Greenman pers. comm. 2015
1
).  Laska et al. (2011) described mixed groups of 

estuarine and coastal dolphins in nearshore coastal waters around Charleston; however 

the degree of this interaction remains unclear. 

The most recent abundance estimates included in the NMFS Stock Assessment 

Reports (SARs) for both the SM stock and the SC/GA stock were calculated using 

stratified aerial survey data from the summer (July-August) of 2010 and 2011 (Waring et 

al. 2014).  The best abundance estimate for each stock was calculated as the weighted 

average between these two survey years, with higher weighing given to the year with the 

                                                             
1 Justin Greenman, December 15th, 2015. 
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most precise estimate (Waring et al. 2014).  The precision of each abundance estimate 

was given by its coefficient of variation (CV), in which values closer to zero are 

considered most precise.  Population size for the SM stock was estimated at 9,173 

individuals (CV 0.30), for dolphins sighted in the summer months from the shoreline out 

to the 20-m isobaths between Cape Lookout, NC and Assateague, VA (Waring et al. 

2014).  SC/GA stock abundance was estimated at 4,377 individuals (CV 0.43) for 

dolphins found in the summer months from the shoreline to the 40 m isobaths between 

the NC/SC border and the GA/FL border (Waring et al. 2014). 

However, abundance estimates carried out using traditional aerial line-transect 

surveys lack the ability to identify individuals and to designate dolphins to specific 

stocks.  Thus biologically meaningful definitions of stock boundaries are needed in order 

to estimate unbiased population parameters for each stock, especially in areas of stock 

overlap.  Photo-identification methods are well established for individually identifiable 

cetaceans such as bottlenose dolphins and can provide insights into temporal-spatial use 

of the surveyed area, allowing for inferences into stock identity.  Moreover, photo-

identification surveys can be applied to a mark-recapture framework, allowing for 

estimates of population parameters that can be more precise than those estimated using 

aerial line-transects surveys (Fairfield 1990). 

Mark-Recapture 

Mark-recapture estimates can be calculated most simply using the Lincoln-

Petersen model for two-sample surveys (one mark and one recapture) assuming a closed 

population where:  total population abundance (N̂) is calculated by assuming the ratio of 

marked individuals in the first sample (n1) to the total population (N̂) is equal to the ratio 
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of captured individuals in the second sample (n2) to the number of recaptured individuals 

(previously marked) in the second sample (m2) (Nichols 1992, Williams et al. 2002, 

Chao and Huggins 2005).  The Schnabel method, an extension to the Lincoln-Petersen 

method, may be used when population closure is assumed but multiple recapture surveys 

are conducted (Krebs 1988, Williams et al. 2002, Chao and Huggins 2005).  The 

abundance estimate, variance, and confidence interval formulas for both models (Krebs 

1988, Williams et al. 2002) are found in Chapter 2. 

More robust models can be used in long-term studies, in the presence of different 

residency patterns, and/or when the range of the target species is unknown (Smith et al. 

2013).  Pollock’s Robust Design (1982) includes a combination of closed and open 

population models by creating a sampling scheme with two different temporal scales, 

namely primary and secondary periods.  Each secondary period represents a complete 

survey of the entire study area.  Intervals between secondary periods are kept short to 

allow for population mixing without violating closure.  A primary period is comprised of 

a set of two or more secondary periods.  Primary periods are spaced over longer time 

scales and the population is assumed to be open between them (see Pollock 1982, Pollock 

et al. 1990). 

Models can be fitted to robust design data allowing for estimations of abundance, 

temporary emigration, and survival (Kendall 2001).  Nichols (1992) and Seber (1992) 

review a variety of models that address different sources of heterogeneity in capture 

probability.  The null model Mo is the simplest model and assumes no variation in 

capture probability between individuals or sampling occasions (Nichols 1992, Seber 

1992, Williams et al. 2002).  Model Mt (time variation) assumes that individuals have the 
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same capture probability within a sampling occasion, but that this probability varies 

between sampling occasions (Nichols 1992, Seber 1992, Williams et al. 2002).  Model 

Mh (heterogeneity) assumes that individuals have different capture probabilities (Nichols 

1992, Seber 1992, Williams et al. 2002).  Combinations of models may be fitted to the 

data using statistical programs such as MARK (Cooch and White 2006) or packages for 

the program R (R Core Team 2015). 

When emigration occurs, capture probabilities will be biased downward by those 

individuals that are not available for capture at the time of sampling.  Emigration can be 

random or follow a first-order Markov process (Kendall et al. 1997).  Under the random 

emigration model, the probability of being unavailable for capture is equal to the 

probability of being available for capture (Kendall et al. 1997).  Markovian emigration is 

time dependent with the probability of being available for capture during the current 

sampling period depending upon whether or not the individual was present in the study 

area in the previous sampling period (Kendall et al. 1997).  Models may be constrained 

for random or Markovian emigration (Kendall et al. 1997) using the same statistical 

programs mentioned above. 

Model fitness is tested based on Akaike’s information criterion (AICc) (Kendall 

2001, Speakman et al. 2010).  AICc is a procedure corrected for small sample size that is 

used to select the model that best fits the data and has the fewest parameters (i.e. most 

parsimonious) (Burnham and Anderson 2002).  Abundance estimates using mark-

recapture data include only the marked proportion of the population.  Thus, abundance 

estimates of marked individuals are divided by the marked proportion of the samples to 
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estimate total abundance (Nichols 1992, Wilson et al. 1999, Read et al. 2003, Balmer et 

al. 2008, Speakman et al. 2010). 

Mark-Recapture Model Assumptions 

Abundance estimates generated using mark-recapture models are conditional on a 

set of model assumptions.  For the robust design, these assumptions include a 

combination of open and closed population model assumptions such as 1) marks are 

stable, unique, and recognizable over-time; 2) capture does not affect recapture or 

survival; 3) all individuals have an equal and independent chance of capture and survival; 

4) population is demographically and geographically closed within primary periods; and 

5) emigration is temporary (Pollock et al. 1990, Kendall et al. 1995, Read et al. 2003, 

Schwarz 2002, Speakman et al. 2010).  Violations of these assumptions may bias 

estimates derived under these models and need to be examined. 

Marks are stable, unique, and recognizable over-time – This assumption can be 

met when good quality photographs and reasonably marked individuals are used (Wilson 

et al. 1999, Read et al. 20003, Speakman et al. 2010).  However, this assumption is 

violated when marked dolphins acquire heavy loads of the barnacle (Xenobalanus 

globicipitis) on their dorsal fins during the course of the study, temporarily obscuring 

their natural marks.  Individuals with heavy loads of Xenobalanus sp. are treated as 

unmarked, thus potentially falsely reducing the proportion of marked individuals 

(distinctive rate).  Violations of this assumption cause an upward bias in abundance 

estimates (Williams et al. 2002, Rosel et al. 2011) and a downward bias in survival rates 

(Williams et al. 2002). 
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Capture does not affect recapture or survival – The capture of a dolphin consists 

of taking a picture of its dorsal fin, a photographic ‘capture’, and should not affect 

survival (Speakman et al. 2010) or recapture (Read et al. 2003). 

All individuals have an equal and independent chance of capture and survival –

Young-of-the-year and juveniles dolphins have the highest mortality rates (McFee et al. 

2006).  Adults have low mortality rates (Wells and Scott 1999), thus restricting the 

dataset to include adults only (Speakman et al. 2010) can minimize violations of the 

assumption of equal survivability. 

The assumption of an equal chance of capture among individuals may be violated 

in the presence of emigration.  Pollock’s Robust Design (1982) is robust to violations of 

equal catchability (Pollock et al. 1990) as long as migration occurs at a longer temporal 

scale than sampling (Kendall 1999).  In addition, the equal ‘catchability’ assumption may 

be violated given that home ranges and site fidelity may vary among individuals 

(Gubbins 2002a).  Individuals with high site fidelity to the study area would cause a 

negative bias in abundance, conversely individuals that have low site fidelity to the study 

area would positively bias abundance estimates (Pollock et al. 1990, Williams et al. 

2002). 

The ‘independence of capture’ assumption may be violated since bottlenose 

dolphins are known to have preferred associates (Shane et al. 1986, Quintana-Rizzo and 

Wells 2000, Gubbins 2002b), yet this bias would be reflected in the standard errors rather 

than in the abundance estimates (Williams et al. 2002). 

Population is demographically and geographically closed within primary periods 

– Demographical closure may be obtained by restricting the dataset to adults, since 
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dolphins are long-lived (Wells and Scott 1999).  Geographical closure is harder to 

achieve, especially when the distribution of the target species is unknown.  Nonetheless 

violations of geographical closure would bias estimates of individuals present within the 

study area at the time of sampling (i.e. individuals exposed to sampling efforts) (Pollock 

et al. 1990, Kendall 1999), but do not bias estimates pertaining to the super-population 

(Williams et al. 2002).  In this study, the super-population was defined as the putative 

stocks that may occur in the survey area at the time of sampling although not necessarily 

exposed to sampling efforts. 
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Objectives 

Dolphins are found year-round off the northern coast of South Carolina (Young 

and Peace 1999).  Nonetheless, stock membership and residency patterns of these 

individuals are unclear.  An influx of individuals attributed to the SM stock transiting 

through this area has occurred consistently in the fall (McFee et al. 2006, Speakman et al. 

2010, Young pers. comm.), yet it is unknown if individuals from this fall migratory peak 

are only moving through or if they remain in the area for any amount of time.  Effective 

conservation and management plans require current and reliable estimates of potential 

biological removal (PBR) for each bottlenose dolphin stock.  Therefore, the use of long-

term photo-identification data is crucial to determine stock membership and stock 

boundaries in areas of stock overlap such as the northern coast of South Carolina. 

The overall objective of this study was to describe the stock structure of 

bottlenose dolphins inhabiting the northern coast of South Carolina.  Specifically, I 

attempted to determine the number of stocks in the area by identifying members of each 

stock, describe movements for these dolphin stocks, and describe potential stock overlap.  

Finally, I provided year-round local abundance estimates for dolphins in northern South 

Carolina. 

Chapter 1 provided a literature review on the topics of bottlenose dolphin stocks 

in the Atlantic US including current descriptions for stocks occurring off the northern 

South Carolina coast, mark-recapture methodology, and unresolved questions on stock 

boundaries, residency patterns and stock overlap. 
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Chapter 2 was written according to the publishing guidelines provided by the 

journal Marine Mammal Science.  This chapter reports on data collected from 2 years of 

formal transect surveys centered in Murrell’s Inlet, South Carolina, with the intent of 

estimating local abundance during multiple times of the year, describing movements, 

clarifying the number of stocks that occur in the area, and describing potential stock 

overlap.  It specifically addresses the following hypotheses: 

 

H1:  The northern South Carolina coast has two coastal bottlenose dolphin stocks;  the 

South Carolina/Georgia Coastal Stock (SC/GA), found in northern South Carolina 

year-round, and the Southern Migratory Coastal Stock (SM), found in northern 

South Carolina in the colder months. 

 

H2:  Summer estimates of local abundance will pertain to the SC/GA Coastal Stock, 

while estimates during other seasons may include members of the SM Coastal 

Stock.  

 

H3: Members of the Northern South Carolina Estuarine System Stock will be found in 

coastal waters south and inclusive of Murrell’s Inlet, but their contribution to 

coastal abundance estimates will be negligible. 

 

Chapter 3 introduces an additional survey area for the second year of my study 

centered at the South Carolina/North Carolina border in Little River.  The objectives of 

these surveys were similar to the ones described for Chapter 2, except these surveys were 
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also focused on clarifying the southern boundary for the Southern North Carolina 

Estuarine System Stock.  Ultimately, this chapter is not meant to stand alone, but it will 

be incorporated with additional data collected in southern North Carolina for a separate 

publication.  It addresses the additional hypothesis: 

  

H1: Members of the Southern North Carolina Estuarine System Stock will be found in 

and near Little River Inlet, especially in the colder months. 
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Chapter 2 – Stock structure of bottlenose dolphins 

(Tursiops truncatus) in coastal waters off northern 

South Carolina 

Introduction 

Stock structure of bottlenose dolphins (Tursiops truncatus) in the western North 

Atlantic is described as a complex mosaic of overlapping coastal and estuarine 

populations (Waring et al. 2015).  Currently, the National Marine Fisheries Service 

(NMFS) recognizes eleven estuarine stocks and five coastal stocks along the U.S. 

Atlantic east coast (Waring et al. 2015).  Despite our limited knowledge of coastal stocks, 

NMFS is required to provide definitions of these stocks, estimates of abundance and 

potential biological removal (PBR) (Wade and Angliss 1997) in the form of Stock 

Assessment Reports (SARs).  These reports are used to assess the need for conservation 

and management plans for depleted stocks under the Marine Mammal Protection Act 

(MMPA, U.S.C. 16 §1362).  Therefore, current and reliable information for each 

bottlenose dolphin stock is crucial to the implementation of effective management plans. 

According to the most recent SARs, the northern coast of South Carolina is home 

to two coastal bottlenose dolphin stocks which overlap in the cold season:  the South 

Carolina/Georgia Coastal Stock (SC/GA) and the Southern Migratory Coastal Stock 

(SM) (Waring et al. 2014).  In addition, the ranges of two estuarine stocks are described 
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to include coastal waters in the region:  the Northern South Carolina Estuarine System 

Stock (NSCESS) and the Southern North Carolina Estuarine System Stock (SNCESS) 

(Waring et al. 2014).  Estuarine stocks are defined based on a combination of long-term 

photo-identification (photo-ID) studies, satellite tag telemetry, and freeze-brand tags 

(Waring et al. 2014).  However, limited data are available on coastal stocks, thus 

definitions of boundaries and potential stock overlap are rather arbitrary.  For example, 

the SC/GA stock is defined to inhabit coastal waters from the North Carolina/South 

Carolina border to the Georgia/Florida border.  This definition is largely based on the 

presence of dolphins in coastal waters off both South Carolina and Georgia during the 

summer months while the SM stock is presumably found north of Cape Lookout (Waring 

et al. 2014). 

Seasonal movements for the SM stock are based on satellite tags from two 

individuals that were tagged near Cape Fear in November (Waring et al. 2014).  While 

one dolphin moved as far south as northern Florida in the winter, the other remained in 

South Carolina and southern North Carolina; both individuals returned to North Carolina 

in the spring (Waring et al. 2014).  The tags did not last through the summer, 

nevertheless Cape Lookout, NC is presumed to be the southern boundary for this stock 

during the summer months (Waring et al. 2014). 

The most recent abundance estimates for the SM and the SC/GA stocks included 

in the SARs are based on stratified aerial surveys during the summer (July-August) of 

2010 and 2011(Waring et al. 2014).  Groups of dolphins observed during these surveys 

were assigned to different stocks based on their geographical location.  Yet, the summer 

range of the SM stock is not well understood and the geographical extent of the SC/GA 
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stock is artificially defined.  Current abundance estimates for these stocks may be biased 

by the probable overlap of sightings from multiple stocks during surveys. 

Balmer et al. (2014) suggested that a combination of health assessment and 

satellite tagging would provide the most cost effective baseline data on health and 

boundaries for data-deficient stocks.  However, as health assessments are not feasible for 

many studies, photo-ID coupled with comparison of catalogs among study areas can 

provide baseline data on distribution, movements, and potential stock membership 

(Balmer et al. 2014). 

Long-term photo-ID studies have been used to define bottlenose dolphin 

distribution, residency patterns (Quintana-Rizzo and Wells 2000, Gubbins 2002a, Zolman 

2002), as well as to support definitions of stock boundaries for estuarine dolphins along 

the US east coast (Waring et al. 2014, Waring et al. 2015).  In South Carolina, photo-ID 

studies in coastal waters have mainly focused on the Charleston area. 

Speakman et al. (2006) noted coastal dolphins following shrimp boats and 

remaining in the coastal area or the open areas of the Charleston Harbor associated with 

shrimp boat traffic.  Laska et al. (2011) described mixed groups of estuarine and coastal 

dolphins in nearshore coastal waters around Charleston; however the degree of this 

interaction remains unclear.  Greenman (2012) identified coastal bottlenose dolphins 

during a study examining fisheries interaction in coastal waters from North Carolina to 

Florida during 2010-2011, and though comparisons with other catalogs are underway, 

dolphins previously known to associate with shrimp boats were not matched to members 
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of the Charleston or the Northern Georgia estuarine stocks (Greenman pers. comm. 

2015
2
). 

An influx of dolphins into coastal waters in South Carolina has been documented 

in a number of studies.  McFee et al. (2006) observed a significant increase in strandings 

of neonate bottlenose dolphins during the fall between the years of 1997 and 2003 in 

northern South Carolina.  This trend is consistent with small boat-based transect surveys 

that have also shown an influx of dolphins in October and November (1995-1997) for 

northern SC (Young and Peace 1999) and an influx of transient dolphins in November 

and December (2005-2006) for the Charleston area (Speakman et al. 2010).  Limited 

photo-ID analysis from this influx has revealed matches ranging from Wilmington, NC 

(Speakman et al. 2010, Young pers. comm.), to Jacksonville, FL (Speakman et al. 2010).  

Moreover, northern South Carolina historical catalog comparisons (1997-1999) produced 

more matches with southern North Carolina (18/73) then South Carolina (2/73) (Urian 

pers. comm.). 

Estimates of population size and changes throughout the year can be obtained 

from photo-ID surveys conducted within a mark-recapture framework.  Mark-recapture 

photo-ID surveys have been used extensively to estimate bottlenose dolphin abundance 

(Read et al. 2003, Balmer et al. 2008, Speakman et al. 2010, Urian et al. 2013).  Closed 

population models are conventionally used to estimate abundance, however, the 

assumptions of geographical and demographical closure and equal probability of capture 

are challenging to meet when the target population’s range or residency patterns are 

unknown (Pollock et al. 1990).  Open population models do not require closure and allow 

                                                             
2 Justin Greenman, December 15th, 2015. 
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for emigration but these models do not include the presence of seasonal residents 

(emigration is permanent) (Pollock et al. 1990). 

Pollock’s Robust Design (1982) combines both open population and closed 

population models allowing for temporary migration (Pollock et al. 1990), and it is robust 

to the violation of equal probability of capture (Kendall 2001).  It includes two temporal 

scales:  primary periods in which the population is assumed to be open and secondary 

periods in which the population is assumed to be closed (Pollock 1982, Nichols 1992, 

Rosel et al. 2011).  Secondary periods, nested within primary periods, are used to 

estimate abundance from two or more closely spaced sampling sessions, while primary 

periods are used to estimate survival and emigration rates over longer periods (Pollock 

1982, Kendall 2001, Speakman et al. 2010, Rosel et al. 2011). 

Northern South Carolina is described to include the ranges of two coastal stocks 

(Waring et al. 2014), but this definition is data deficient.  Bottlenose dolphins are found 

year-round off the northern South Carolina coast (Young and Peace 1999), and an influx 

of individuals attributed to the SM stock has occurred consistently in the fall (McFee et 

al. 2006, Young pers. comm.).  Yet stock membership, seasonal movements and stock 

overlap are not well understood.  I used a combination of year-round mark-recapture 

photo-identification surveys and comparisons of photo-ID images with neighboring 

catalogs to describe dolphin movements, infer stock membership and stock overlap, and 

estimate local abundance.  Changes in population size throughout the year will most 

likely reflect changes in the stock structure of dolphins utilizing the study area and will 

not reflect fluctuations in the true population size of the putative stocks. 
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Methods 

Mark-Recapture Photo-Identification Surveys 

The northern South Carolina coast is characterized by a long stretch of sandy 

beaches with little estuarine influence, contrasting with surrounding areas dominated by 

barrier islands, large estuaries and continuous connections to the Intracoastal Waterway 

(Schwab et al. 2009).  The continental shelf has a gentle slope, with the 10-m contour 

less than 5 km from shore and the 15-m contour beyond 10 km from shore (Taylor et al. 

2008). 

During onshore-offshore aerial surveys off the US east coast from Savannah, GA 

to the mouth of the Chesapeake Bay, VA, Torres et al. (2005) found most bottlenose 

dolphins were sighted within 2 km from shore.  Thus our mark-recapture surveys 

followed pre-defined 50 km tracks parallel to the coast at 0.5 km and 1.5 km from shore, 

assuming a visibility of 500 m on either side of the research vessel.  Transects ranged 

from 10
th
 Avenue North (N 33.694429, W 78.878216) in central Myrtle Beach to the 

North Inlet entrance and were logistically divided into north and south of our coastal 

access point in Murrell’s Inlet (Fig. 1). 

Following Pollock’s Robust Design (1982), I considered one secondary period 

completed when both 50 km track-lines were run once (100 km total).  I aimed to run one 

mark and two recapture surveys (three secondary periods) within three weeks for every 

primary period.  Primary periods were temporally spaced by an eight week interval 

between the last survey of the previous period and first survey of the following period for 

three reasons: 1) baseline data for the northern South Carolina coast are lacking, thus 
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timeframes that would best describe the dynamics of bottlenose dolphins stocks in the 

area are unknown; 2) to ensure the population was open between primary periods; and 3) 

to investigate the degree of immigration/emigration to and from the study area over 

relatively short intervals. 

Secondary periods were completed in the shortest possible timeframe within 

primary periods to avoid violating the assumption of demographic closure.  One survey 

of the entire area (one secondary period) could be accomplished in one day if the sea state 

remained calm and the total number of dolphins sighted remained relatively low.  Due to 

weather and/or daylight constrains, it was not possible to complete all secondary periods 

in the same timeframe nor was it possible to keep the same timeframe interval between 

secondary periods.  During the second year of surveys, we seldom achieved the goal of 

sampling the area three times for each primary period due to extended windy conditions. 

Surveys were carried out on days with good visibility and Beaufort Sea State 

(BSS) of 3 or less using a 5.5 m rigid-hull inflatable outboard-powered vessel at the 

slowest plane speed (10-14 knots).  The vessel crew included 2-4 researchers:  a captain, 

a photographer, and a data recorder.  When dolphins were sighted, geographical 

coordinates were recorded and the vessel left the track-line. 

The dolphin group, defined as dolphins within 100 m of each other heading in the 

same direction and engaged in similar behavior (Urian and Wells 1996), was approached 

off-effort.  Geographical coordinates were recorded when the individuals were within 

photographical range.  The crew attempted to photograph every group member from a 

perpendicular angle independent of visible marks on the dorsal fin (Wursig and Jefferson 

1988) using Canon Digital SLR cameras equipped with either a 75-300 mm or a 100-400 
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mm adjustable lens.  The sighting was terminated if 1) all individuals were photographed, 

2) 45 minutes have elapsed, or 3) group displayed erratic behavior and/or disappeared.  

However, when the group size was large (> 30 dolphins), the group was photographed 

systematically as subgroups and the 45 minutes time restriction was observed separately 

for each subgroup.  At the end of each sighting, geographical coordinates, environmental 

conditions, group size and composition, as well as overall behavior and heading were 

recorded. 

Photographic data, survey tracks and associated geographical coordinates were 

downloaded into a computer and organized by survey date.  Dorsal fin photos were 

compared within each sighting and the best right and/or left image of each dolphin was 

placed in a separate folder.  ‘Best’ images were then cropped to include only the dorsal 

fin of one individual and image elements such as exposure, lighting, and contrast were 

enhanced using the tools available in Microsoft® Photo Gallery 2012.  FinBase (Adams 

et al. 2006), a modified Microsoft® Access database for dolphin sighting data, was used 

to manage the dorsal fin images and the associated survey/sighting information. 

The ‘best’ images of each dolphin were scored for photographic quality (PQ) 

using the score scale built into FinBase.  Images with a PQ score greater than 11 were 

considered unsuitable and excluded from subsequent analysis.  Suitable images were used 

to create a dorsal fin catalog.  At the time of entry, dorsal fins were scored for 

distinctiveness following the methods of Urian et al. (2013), in which D1 fins are highly 

marked, D2 fins have at least 2 distinguishable features and D3 fins have little to no 

features.  We considered D1 and D2 fins as marked and D3 fins as unmarked.  Every 

catalog entry was verified by a second researcher. 
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Capture histories, a string of 1s and 0s indicating whether each marked individual 

was captured (i.e. photographed) (Williams et al. 2002), were compiled using queries 

built in FinBase.  Capture histories were then used to estimate population parameters in 

the program R (R Core Team 2015) using the package Rcapture (Baillargeon and Rivest 

2007) and the program MARK 6.2 (Cooch and White 2006). 

Mark-Recapture Data Analysis 

Several closed and robust models were fitted to the data.  First, closed population 

models were fitted to each primary period.  The Chapman modification of the Lincoln-

Petersen model (Seber 1982, Williams et al. 2002, Chao and Huggins 2005) was applied 

to two-sample surveys and calculated as: 

�̂�  =  
(𝑛1  +  1)  ∗  (𝑛2  +  1)

(𝑚2  + 1)
 –  1 

 

𝑉𝑎𝑟�̂� =  
(𝑛1 + 1) ∗ (𝑛2 + 1) ∗ (𝑛1 − 𝑚2) ∗ (𝑛2 − 𝑚2)

(𝑚2 + 1)2 ∗ (𝑚2 + 2)
 

 

95 % 𝐶𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙 = �̂� ± 1.96 ∗ √𝑉𝑎𝑟�̂� 

 
Where n1 represents the number of identified dolphins in the ‘mark’ survey, n2 represents 

the number of identified dolphins in the ‘recapture’ survey, and m2 represents the number 

of recaptured (previously identified) dolphins (Seber 1982, Williams et al. 2002). 

The Schnabel method (Krebs 1988, Williams et al. 2002) was applied to three 

sample surveys and calculated as follows: 

�̂� =  (
∑(𝐶 ∗ 𝑀)

∑(𝑅) + 1
) 
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95 % Confidence Interval: 

upper endpoint =
∑(𝐶 ∗ 𝑀)

(∑(𝑅)𝐿𝑜𝑤𝑒𝑟 𝐿𝑖𝑚𝑖𝑡)
, lower endpoint =

∑(𝐶 ∗ 𝑀)

(∑(𝑅)𝑈𝑝𝑝𝑒𝑟 𝐿𝑖𝑚𝑖𝑡)
  

Where C = number of captured dolphins in each sample, M = number of marked dolphin 

in the population at large, and R = number of recaptured dolphins in each sample (Krebs 

1988).  Confidence intervals were calculated using the Poisson frequency distribution 

table since the data did not follow a normal distribution (see Krebs 1988).  Given the 

number of recaptures, the Poisson frequency distribution table provides upper and lower 

limits for 95% or 99% confidence intervals.  To get the upper confidence interval 

endpoint, the sum of recaptures was substituted by the value corresponding to the lower 

95% limit on the Poisson table.  Similarly, the lower confidence interval endpoint was 

obtained by substituting the sum of R by its upper limit corresponding value on the 

Poisson table. 

Package Rcapture (Baillargeon and Rivest 2007) in program R (R Core Team 

2015) was used to fit a combination of closed and robust population models that relaxed 

the ‘equal catchability assumption’.  Model Mh accounts for individual heterogeneity in 

capture probability, model Mt accounts for temporal variation in capture probability, and 

model Mth includes a combination of the latter (Nichols 1992, Seber 1992, Williams et 

al. 2002).  The behavioral response model (Mb) was not applied to the data given the 

non-invasive nature of photo-identification. 

The program MARK 6.2 (Cooch and White 2006) was used to fit 12 robust 

models that included variation in capture probability under either random or Markovian 

emigration.  These models were tested against four null models of ‘no emigration’ and 

‘no movement’.  The ‘set time intervals’ option in program MARK was used to adjust the 



Silva 

26 

time interval between primary periods given these were uneven across samples (Cooch 

and White 2006).  Models were run under the ‘logit link function’ since most models 

included constraints (Cooch 2001). 

Model derived estimates included only distinctively marked dolphins, thus total 

population abundance (Ñ) was adjusted to include both marked and unmarked 

individuals by dividing the ‘marked’ (N̂) dolphin abundance by the distinctive rate (θ) as 

follows (Urian et al. 2015): 

Ñ =
�̂�

𝜃
   and 𝑉𝑎𝑟Ñ = �̂�2 (

𝑉𝑎𝑟 �̂�

�̂�2 ) + (
𝑉𝑎𝑟 �̂�

�̂�2 )  

 The distinctive rate (θ) is the number of marked individuals in a sighting divided 

by the total number of individuals in the sighting.  It was calculated for each primary 

period from a compilation of all on-effort sightings where all individuals in the group 

were photographed (Wilson et al. 1999).  Neonates and calves were excluded from this 

estimate given their lack of independence (Nicholson et al. 2012). 

The coefficient of variation (CV) was calculated for abundance estimates derived 

from the best fitted model under different methodologies for each primary period.  The 

estimation method with the lowest CV was selected as the best (most precise) method. 

Statistical Tests 

 A Mann-Whitney U test was used to compare median sightings-per-unit-effort 

(SPUE) between two independent variables and test whether or not the medians were 

significantly different.  Kruskal-Wallis Χ
2
 test was employed to test whether or not the 

SPUE medians were significantly different when three or more independent variables 

were under investigation.  Both tests were performed using program R (R Core Team 

2015). 
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Movements, Distribution, and Potential Stock Membership  

A subset of the catalog, including all D1 dorsal fins (n = 78) and D2 dorsal fins 

sighted 3 or more times (n = 45) was selected for comparisons among well-established 

dorsal fin catalogs.  Due to time constraints, full catalog comparisons were not possible.  

This selected subset of dorsal fin images was compared internally with the Coastal 

Carolina University’s dorsal fin catalog to investigate individual sighting history, 

movements, and seasonal patterns.  In addition to the current study, the Coastal Carolina 

University dorsal fin catalog dates back to 1997, including sightings from 18 years of 

coastal and estuarine surveys from various locations in South Carolina.  Recent catalog 

entries included formal mark-recapture surveys centered in Little River and in southern 

North Carolina. 

The same subset of dorsal fin photographs (n = 123) was compared among 

adjacent survey areas in the Carolinas via the Mid-Atlantic Bottlenose Dolphin catalog 

(MABDC, Urian et al. 1999), specifically with the National Ocean Service-Charleston 

(NOS) and the Duke Marine Lab/University of North Carolina Wilmington 

(DUML/UNCW) catalogs to determine individual movements and stock membership.  

The MABDC has over 14,000 dorsal fin images from 18 survey areas and 28 different 

contributors, dating back to 1979 (Urian pers. comm.). 

Rather than classifying individuals in different residency categories, I described 

when individual dolphins were resighted.  Movements were defined based on sighting 

dates from matches with other areas.  Similarly, stock membership was inferred based on 

the combined sighting history of matches (internal and via MABDC), consultations with 

other researches, and published stock descriptions. 
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Results 

Mark-Recapture Photo-Identification Surveys 

I planned to conducted mark-recapture surveys over 12 primary periods from July 

2013 through June 2015.  The December 2014 primary period was postponed to January 

2015 due to logistical limitations.  However, weather conditions in 2015 also hindered 

survey efforts until mid-April/May.  Consequentially the primary periods planned for 

January and March 2015 were not completed and were supplemented with the addition of 

a primary period in July/August 2015. 

Each primary period included 2-3 secondary periods.  Due to weather constraints 

and/or high number of individual dolphins sighted, it took between 1 and 4 survey days to 

complete a secondary period, with an interval of 0-10 days between surveys.  A total of 

43 survey days yielded 27 secondary periods within 10 primary periods (Table 1). 

Over this 2 year study, 262 hours were spent on the water surveying a total of 

2,653 km on-effort.  We sighted 211 dolphin groups (195 on-effort) and identified 532 

marked individuals from on-effort sightings.  The marked proportion (θ) varied from 

0.69 in August 2013 to 0.09 in October 2014 (Table 2).  The low θ in October was due to 

heavy coverage of the barnacle Xenobalanus globicipitis, which obscured the outline of 

the dorsal fins for dolphins sighted during the fall migratory peak. 

Sighting frequency of marked dolphins ranged from 1 to 6, and only 132 of 580 

dolphins were sighted more than once (Fig. 2).  The rate of discovery of new individuals 

increased between July/August and October (2013), plateaued between December 2013 
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and April 2014, increased steeply between April and August (2014), and kept increasing 

at a slower rate during year 2 (August 2014 – August 2015) (Fig. 3). 

Mean sightings-per-unit-effort (SPUE) was 1.4 dolphins/km for the inner track 

(0.5 km from shore) and 1.1 dolphins/km for the outer track (1.5 km from shore), but the 

difference was not significant (Mann-Whitney U = 1712, n = 27 survey tracks at each 

distance from shore, p = 0.2231).  A comparison of SPUE per primary period did not 

meet the homogeneity of variance assumption (Levene’s test p = 0.0087) due to small 

sample size; thus, the Kruskal-Wallis test was not employed to test the differences 

between primary periods.  Nonetheless, SPUE was generally higher for primary periods 

between June and early November and lower for primary periods between December and 

April.  Moreover, the October/November primary period in 2014 had the highest number 

of daily sightings (≥ 10) and the highest mean SPUE (4.57 dolphins per km) (Appendix 

A).  Seasonal SPUE was significantly different (Kruskal-Wallis Χ
2

(3) = 13.73, p = 

0.0033), with the late fall (Oct/Nov 2014) SPUE being significantly higher than all other 

seasons (Dunn’s test p < 0.000 spring, p < 0.000 summer, p < 0.000 winter, and p = 0.02 

early fall).  Early fall (Oct 2013) SPUE was also significantly higher than winter 

(December 2013/ February 2014) (Dunn’s test p = 0.02). 

Model Selection and Model Derived Estimates 

Several primary periods yielded low (n = 1 or n = 2) or no (n = 0) recaptures and 

required modified analysis.  The December 2013 (n = 1) and the February 2014 (n = 0) 

primary periods were combined to increase recapture sample size (n = 1) given that one 

match was found between them and that mean water temperatures (MWT) were below 15 

°C.  Likewise, June (n = 0) and August 2014 (n = 14) primary periods were combined to 
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increase recapture sample size (n = 27) given the presence of matches between these 

primary periods and the similar MWT.  When primary periods were combined, they were 

analyzed as a series of samples in which the first secondary period represented the ‘mark’ 

survey and the subsequent secondary periods represented ‘recapture’ surveys. 

The April 2014 primary period had no recaptures (n = 0) and no matches with 

preceding or succeeding primary periods.  Similarly, April/May (n = 1) and July/August 

(n =1) of 2015 had low recaptures and no matches between them.  Combining these 

periods did not increase recapture sample size, thus they were treated separately. 

The October/November primary periods also had low recaptures (n = 2 for 2013, 

and n = 0 for 2014), however given that the fall represents a unique time of the year when 

dolphins are migrating through the area (Young pers. comm.), these periods were not 

combined with either preceding or succeeding primary periods.  An artificial recapture 

was added to each of the primary periods mentioned above to correct for small sample 

size. 

Package Rcapture (Baillargeon and Rivest 2007) in program R (R Core Team 

2015) was used to fit closed population models to each primary period.  Best fitting 

models were selected based on the lowest AICc value.  These models were then 

compared to the null model estimates derived from either the Lincoln-Petersen method or 

the Schnabel method.  Both best fitting R models and ‘manual’ estimation methods 

yielded similar trends with highest abundance in the fall of 2014 (N̂ = 5,314; 95% C.I. = 

674-12,199 and N̂ = 8,488; 95% C.I. = 674-19,783, respectively) and lowest abundance 

in the spring 2014 (N̂= 80; 95% C.I. = 40-164 and N̂  = 84; 95% C.I. = 16-1647, 

respectively (Fig. 4). 
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Program MARK 6.2 (Cooch and White 2006) was used to fit 12 robust models 

that included variations in capture probability under either random or Markovian 

emigration.  These models were tested against four null models of ‘no emigration’ and 

‘no movement’.  Markovian Model Mt with time variation in apparent survival (S), time 

variation in emigration (γ”), time variation in immigration (1-γ’), and different capture 

probability for each sampling occasion (p(t)) was the best fitted model (Table 3). 

Estimates from all models followed the same general annual trend with increased 

number of dolphins in the fall and decreased number of dolphins in the spring of 2014.  

Abundance estimates from the Mt model with Markovian emigration varied from 19 

(95% CI 11-84, CV = 0.68) in spring 2014 to 1,382 (95% CI 572-3464, CV = 0.49) in fall 

2014.  The total population abundance (after adjusting for θ) varied from 76 (95% CI 44-

336, CV = 0.68) in the spring 2014 to 16,070 (95% CI 6,651-40,279, CV = 0.49) in the 

fall of 2014 (Table 2). 

The apparent survival probability (S) varied between primary periods with the 

lowest estimates between winter and spring, and between spring and summer (Table 2).  

The emigration probability (γ”) was estimated at 1.00 from October 2013 until June 

2014, when it dropped to 0.45 and increased again between October 2014 and May 2015 

(Table 2).  The immigration probability (1-γ’) was high in most primary periods except 

between winter and spring (Table 2). 

Movements, Distribution, and Stock Membership 

During the current study, 108 dolphins were sighted in more than one primary 

period or during off-effort photo-ID surveys.  Most resightings occurred between July 

and October 2013, June through October 2014, and/or April through August 2015, during 
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which sampled mean water temperatures were above 19 °C.  Two dolphins were 

resighted while sampled mean water temperature was below 14 °C, one in December 

2013 and February 2014 (7.9-13.6 °C) and the other in February 2014 and March 2015 

(7.9-11 °C).  

Even though winter and spring months had less effort due to weather conditions, 

there appears to be a stock(s) transition during October/November and again during 

April/May.  Historical (2005-2013) water temperature averages also show a transition 

from semi-tropical (above 19 °C) to temperate (below 15 °C) in November and again 

from temperate to semi-tropical in April (Armstrong, 2014).  These transitions suggest 

the presence of a ‘warm’ season (April/May –mid-November) assemblage and a ‘cold’ 

season (mid-November–March/April) assemblage.  Dolphins photographed during the 

warm season were not photographed during the cold season. 

Dorsal fins photographs were compared to photo-ID studies off Little River, SC 

(June 2014-August 2015) and off southern North Carolina (June-August 2014 and 

December 2014) carried out by CCU.  Catalog comparisons yielded 10 matches with 

Little River and four matches with southern NC (Fig. 5), all within the warm season.  

Five dolphins were photographed in Murrell’s Inlet between June and September 2014 

and in Little River in October 2014.  Inter-annual matches included four dolphins seen in 

August-October 2014 in Murrell’s Inlet and in May 2015 in Little River, three dolphins 

sighted in Murrell’s Inlet in July-September 2013 and in southern North Carolina in July 

2014, and one dolphin sighted in Murrell’s Inlet in August 2013 and in Little River in 

August 2015. 
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Comparisons using a subset of the catalog (n = 123) with CCU’s historical catalog 

and with adjacent areas via the MABDC catalog yielded a total of 15 matches dating as 

far back as 1996 (Fig. 6).  Eight dolphins were matched with the NOS Charleston, SC 

catalog dating back to 2003.  Three individual dolphins were photographed in Charleston 

in May and June (2003-2009) and photographed in northern South Carolina within the 

warm season (May-October).  Another five individuals were photographed in November 

(2006) and December (2007) in the Charleston area and photographed in northern SC in 

the warm season (May-October). 

Matches with southern North Carolina included five dolphins, of which two were 

historical matches between the CCU and the UNCW catalogs (Urian pers. comm.).  

Dolphins 3003 and 3006 were sighted in southern North Carolina in the summer (July-

Sept) of 1998 and in northern South Carolina in the fall transition period (mid-October-

mid-November).  Both of these individuals were sighted in the summer during the present 

study. 

Dolphins 3026 and 3027 were sighted in northern SC during the cold months and 

in southern North Carolina during the warm months.  These two individuals have a 

history of sightings in inshore waters of southern NC, thus they are defined as members 

of the SNCESS based on the definitions in the SARs.  The remaining three dolphins had 

only coastal sightings within the warm season and thus potentially belong to a coastal 

stock.  However, coastal dolphins ranging between southern North Carolina and northern 

South Carolina during the warm months are not described in any SARs to date. 
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Discussion 

Abundance estimates (after adjusting for θ) varied substantially from 76 dolphins 

(CV = 0.68) in the spring of 2014 to 16,070 dolphins (CV = 0.49) in the fall of 2014 

(Table 2).  These differences are indicative of the number of individuals using the study 

area and do not reflect fluctuations in the true population size of the putative stocks.  

These are the only estimates of bottlenose dolphin abundance available for coastal South 

Carolina. 

Estimates of abundance were highest in the fall of both years.  Though survey 

effort was limited during the cold months due to weather constraints, winter estimates 

were generally lower than summer estimates.  The same general trend was observed in 

coastal waters of North Carolina, where bottlenose dolphins were most abundant during 

late fall (October/November) and less abundant during winter/spring (January/March) 

(Torres et al. 2005).  Abundance estimates for the inshore waters of South Carolina, 

including the Charleston Estuary (Speakman et al. 2010) and the North Inlet/Winyah Bay 

Estuarine Reserve (Brusa 2012), follow a different trend with the highest estimates of 

abundance in the summer and lowest in the winter. 

The current best abundance estimates for the SC/GA and the SM stocks in the 

SARs are 4,377 and 9,173 dolphins respectively.  Summer abundance estimates for 

northern South Carolina were 371 (CV 0.17) dolphins in 2013 and 1,441 (CV 0.14) 

dolphins in 2014.  Abundance estimates using photographic mark-recapture methods 

applied to coastal areas of similar size along the Atlantic seaboard are not available at this 

time.  Speakman et al. (2010) surveyed 33 km of nearshore coastal waters near the 
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Charleston harbor, yet abundance estimates for this particular survey area were not 

reported.  Toth et al. (2011) identified 205 marked bottlenose dolphins in a 70 km stretch 

of coastline off New Jersey during a 3-year study.  In comparison, the present study 

identified 532 marked dolphins along a 50 km stretch of coastline in 2 years. 

The summers of 2013 and 2014 were the only primary periods with sufficient 

recaptures rates (R>7) to provide reliable abundance estimates (Krebs 1988).  Primary 

periods with low recaptures (0-2) caused an upward bias in the abundance estimates and 

created wide confidence intervals.  Even when primary periods were combined (e.g. 

winter 2013-2014), only one recapture was achieved.  Moreover, the prevalence of the 

barnacle Xenobalanus globicipitis during the colder months may have caused an artificial 

decrease in the distinctive rates, given that individuals with heavy loads of Xenobalanus 

sp. are treated as unmarked.  In turn, abundance estimates during the colder months 

potentially suffered from an additional bias. 

The fall primary periods were not combined with any other season given that they 

represent a unique time of the year when dolphins are migrating through the area.  Even 

though the fall of 2013 (early October surveys) had low recaptures (2 out of 108 marked 

dolphins), this sampling period had relatively high proportion of marked individuals with 

a distinctive rate of 0.56 and estimates are likely not biased.  Conversely, the fall of 2014 

(late October/early November surveys) had no recaptures and very low distinctive rates 

(0.09).  One artificial recapture was added to allow for estimation, which resulted in an 

upward bias in abundance.  Nevertheless, this primary period had the highest number of 

daily sightings (≥ 10 in every survey day) and highest mean sightings-per-unit-effort.  

Thus, it appears the 2014 fall surveys captured the annual fall migratory peak in northern 
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South Carolina (Young pers. comm.); while the 2013 fall surveys were carried out earlier 

in the season and did not capture the peak. 

In addition to low recapture rates, abundance estimates may be biased by 

violations of model assumptions.  For the robust design, these assumptions include a 

combination of model assumptions such as:  1) marks are stable, unique, and 

recognizable over-time; 2) capture does not affect recapture or survival; 3) all individuals 

have an equal and independent chance of capture and survival; 4) population is 

demographically and geographically closed within primary periods; and 5) emigration is 

temporary (Pollock et al. 1990, Kendall et al. 1995, Read et al. 2003, Schwarz 2002, 

Speakman et al. 2010).  These assumptions were reviewed by Read et al. (2003) and 

Speakman et al. (2010), and only potential violations are discussed here. 

Marks are stable, unique, and recognizable over-time – This assumption is 

violated when potentially marked dolphins acquire heavy loads of the barnacle 

(Xenobalanus globicipitis) on their dorsal fins, temporarily obscuring their natural marks.  

Estimates derived from the October 2013, December 2013/February 2014, and 

October/November 2014 primary periods are likely positively biased due to a high 

proportion of individuals with heavy loads of Xenobalanus, which reduces recapture rates 

and violates the assumption that marks are not lost or gained during the study. 

Population is geographically closed within primary periods – In this study, 

logistical restrictions and weather conditions hindered survey efforts, and the interval 

between secondary periods was as long as 21 days, possibly violating assumption of 

geographic closure.  Violations of the assumption that the population is geographically 

closed may cause an upward bias in the abundance estimates for the population present 
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within the study area at the time of sampling (i.e. individuals exposed to sampling efforts) 

(Pollock et al. 1990, Kendall 1999), but do not bias estimates pertaining to the super-

population (Williams et al. 2002).  In this study, the super-population was defined as the 

putative stocks that may occur in the survey area at the time of sampling although not 

necessarily exposed to sampling efforts. 

All individuals have an equal and independent chance of capture and survival – 

The chance that all individuals have equal probability of capture may be violated if 

emigration occurs during the study.  The Robust Design (1982) is robust to violations of 

equal catchability (Pollock et al. 1990) as long as migration occurs at a longer temporal 

scale than sampling (Kendall 1999).  Previous studies in this area strongly suggest a 

migratory peak into the study area and differences in capture probability were 

incorporated into the Markovian emigration model.  Markovian models that included 

heterogeneity in capture probabilities (Mth) were too parametrized and provided a poor 

fit to the data. 

Population is demographically closed within primary periods – The assumption 

that there is demographic closure may be met by restricting the dataset to adult 

individuals, since bottlenose dolphins are long-lived (Wells and Scott 1999).  However, 

bottlenose dolphins in the study area were impacted by an unusual mortality event during 

the span of the present study (NMFS 2015).  To date, no dolphins identified during this 

study were matched to dolphins that stranded in South Carolina during the epizootic and 

one dolphin identified during this study was matched to an individual that stranded off 

the southern North Carolina coast (Urian pers. comm.). 
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Management Implications 

This study highlights the importance of photo-identification as a tool to describe 

stock boundaries and movements.  For example, the northern boundary for the NSCESS 

was defined based on habitat characteristics and the southern boundary abuts the northern 

boundary for the Charleston Estuarine System Stock.  However, these boundaries have 

not been systematically investigated to date.  The present study supported the definitions 

for the northern boundary of the NSCESS given that members of this stock were never 

sighted in coastal waters north of Murrell’s Inlet, SC. 

In the absence of definitive data for coastal stocks, stock assessment reports 

describe the SM stock summer distribution to be north of Cape Lookout and the SC/GA 

stock to be restricted to waters of coastal South Carolina and Georgia (Waring et al. 

2014).  Interestingly, summer dolphins occurring between Cape Lookout, NC and the 

South Carolina border are not included in any stock assessment report to date.  However, 

dorsal fin matching efforts among several catalogs during the present study indicate that 

coastal dolphins routinely range from Cape Fear, NC to Winyah Bay, SC during the 

warm season of May through October.  Historical efforts to match dorsal fin catalogs 

found 25% of dorsal fins photographed in northern South Carolina were also 

photographed in southern North Carolina, mostly in the Wilmington area (Urian pers. 

comm.). 

Long-term stranding data support the hypothesis that northern South Carolina 

dolphins are related to southern North Carolina coastal dolphins.  McFee et al. (2006) 

found different stranding patterns for neonate dolphins in the northern and southern 

portion of South Carolina.  Neonate strandings were significantly higher in the fall from 
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Little River to Murrell’s Inlet, contrasting with the bi-modal peak in the spring and fall 

for the rest of the state (McFee et al. 2006).  Moreover, stranding patterns described for 

the northern portion of South Carolina are similar to those described for the southern 

portion of North Carolina (Thayer et al. 2003), possibly representing a single stock.  

Whether these dolphins belong to the SM stock or are part of a stock of their own needs 

to be further investigated. 

Alternatively, the SC/GA stock could extend into southern North Carolina during 

the warm months, given that dorsal fin matches with both southern North Carolina and 

Charleston, SC were found during the warm months in the present study.  Sighting 

histories of those dolphins matched with the Charleston catalog suggest these individuals 

belong to coastal stocks given that none of them were sighted within the Charleston 

Harbor, but were rather sighted in nearshore coastal waters (Speakman, pers. comm.
3
).  

Matches within the warm season most likely include members of the SC/GA stock and 

matches between warm and cold seasons could belong to the SC/GA or the SM stock 

(Appendix B).  However, the SM stock is not described to be present in northern SC 

during the warm months.  Thus, these between-season matches could also represent a 

separate coastal stock.  The lack of year-round resightings in the present study also 

suggests a seasonal migratory pattern for the study area. 

The present study supports that multiple stocks overlap in northern South 

Carolina and that an undefined coastal stock occurs from southern North Carolina to 

northern South Carolina, possibly as far south as Charleston in the summer (Appendix 

C).  Dolphins found between Cape Lookout and the North Carolina/South Carolina 

                                                             
3 Todd Speakman, March 4th, 2015 
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border during the summer months are currently not included in any stock descriptions.  

Moreover, the northern boundary for the SC/GA coastal stock is artificially defined at the 

North Carolina/South Carolina state boundary; and the seasonal movements of the SM 

stock are defined based on limited data from only 2 satellite tags that did not last a whole 

year. 

Previous coastal stock descriptions included a Southern North Carolina Coastal 

Stock ranging from Cape Lookout, NC to Murrell’s Inlet, SC and distinct South Carolina 

and Georgia coastal stocks (Waring et al. 2008).  Data from the present study support this 

previous description over the current descriptions of stocks occupying the northern South 

Carolina coast.  Additional survey and matching effort is needed to better define the 

boundaries and distribution of coastal stocks. 
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Chapter 3 – Is there a bottlenose dolphin (Tursiops 

truncatus) stock boundary at Little River Inlet, SC? 

Introduction 

Bottlenose dolphin stocks off the northern South Carolina coast are poorly 

defined due to the lack of baseline data.  The North Carolina/South Carolina state border 

is defined as the geographical boundary for at least two stocks:  the Southern North 

Carolina Estuarine System Stock (SNCESS) and the South Carolina/Georgia Coastal 

Stock (SC/GA).  In addition, the Southern Migratory Coastal Stock (SM) is believed to 

migrate to northern South Carolina in the winter (Waring et al. 2014).  However, the 

legitimacy of this boundary has not been investigated through systematic photo-

identification surveys. 

Photo-identification survey data from southern North Carolina (1995-2003) were 

used to examine the relationship between dolphins and shrimp boats.  Fleming (2004) 

found different temporal and spatial variability in the sightings of shrimp trawler-

associated and non-shrimp trawler-associated dolphins.  Non-trawler dolphin sightings 

occurred only in the fall and winter in the Southport area; but the same individuals were 

sighted year-round in northern estuarine waters near Wilmington, NC (Fleming 2004).  

This sighting pattern supports the National Marine Fisheries Service (NMFS) definition 

for the SNCESS, thus non-trawler dolphins potentially represent the latter.   
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Most trawler-dolphin sightings occurred in the summer and fall (Fleming 2004).  

Trawler-associated dolphins are potentially members of a coastal stock.  Five of 45 

trawler-associated dolphins from the Southport area (southern North Carolina) have been 

matched with Coastal Carolina University’s (CCU) historical catalog (1998-1999) from 

coastal surveys of Murrell’s Inlet (Urian pers. comm.) indicating that at least some of 

these dolphins move into coastal South Carolina. 

In an attempt to further investigate the stock membership of dolphins found off 

northern South Carolina, Dunn et al. (2014) created a partnership with two dolphin tour 

groups, one in Little River and one in Murrell’s Inlet.  They compared photographs taken 

during dolphin tours to those taken during systematic surveys in Murrell’s Inlet from 

June through December 2013 (described in Chapter 2).  Comparisons were also made 

with Coastal Carolina University’s historical catalog, and the National Ocean Service-

Charleston catalog via the Mid-Atlantic Bottlenose Dolphin Catalog (MADBC) (Urian et 

al. 1999).  Photographic data included 463 dolphins photographed during formal transect 

surveys off Murrell’s Inlet,  44 dolphins photographed during dolphin tours off Murrell’s 

Inlet, and 122 dolphins photographed during dolphin tours off Little River and yielded 16 

matches, including one match with Charleston, SC.  Moreover, results showed temporal 

and spatial variability among individuals; while some dolphins were repeatedly found in 

one survey area, others moved between survey areas. 

Systematic mark-recapture surveys were ongoing on two 50 km transects centered 

in Murrell’s Inlet, SC (described in Chapter 2).  Dunn’s et al. (2014) findings were 

compelling enough to initiate mark-recapture systematic surveys off of Little River to 

further investigate the degree of movement within northern South Carolina and between 
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adjacent areas in the Carolinas.  The objectives of these surveys were to investigate 

whether Little River Inlet is a geographical boundary for dolphin stocks, define which 

stocks are present in the survey area, describe seasonal movements and potential stock 

overlap, and estimate local abundance at various times of the year.  I hypothesized that:  

1) members of the SNCESS will be found in inshore and near-shore coastal waters off 

Little River during the colder months, as proposed by Fleming (2004) and Waring et al. 

(2014), and 2) dolphins found in coastal waters off Little River will include members of 

the SC/GA and/or the SM coastal stocks. 
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Methods 

Mark-Recapture Photo-Identification Surveys 

The northern South Carolina coast is characterized by a long stretch of sandy 

beaches with little estuarine influence, contrasting with surrounding areas dominated by 

barrier islands, large estuaries and continuous connections to the Intracoastal Waterway 

(Schwab et al. 2009).  The only connection to the Intracoastal Waterway is via the Little 

River Inlet Estuary, a 4 km long stretch from the Intracoastal Waterway to the jetties 

found at the border with North Carolina.  The study area included a 28 km stretch of 

estuarine waters from Holden Beach, NC to Little River, SC and a 50 km stretch of 

coastal waters from Holden Beach, NC to northern Myrtle Beach, SC, hereafter referred 

to as Little River surveys (Fig. 7). 

In South Carolina, mark-recapture surveys followed two 25 km pre-defined tracks 

parallel to the coast at 0.5 km and 1.5 km from shore from Little River Inlet to 

approximately 82
nd

 Ave in Myrtle Beach.  In North Carolina, the 25 km coastal track was 

run at 0.3 km from shore and the 28 km inshore track was comprised of the Intracoastal 

Waterway (ICW) from the Lockwood-Folly Inlet in Holden Beach, NC to the Johnny 

Causeway landing in Little River. 

Following Pollock’s Robust Design (1982), I considered one secondary period 

completed when all track-lines were run once (103 km).  I aimed to run one mark and two 

recapture surveys (three secondary periods) within 3 weeks for every primary period.  

Primary periods were temporally spaced by an 8-week interval between the last survey of 

the previous period and first survey of the following period for three reasons: 1) baseline 
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data for the northern South Carolina coast are lacking, thus timeframes that would best 

describe the dynamics of bottlenose dolphins stocks in the area are unknown; 2) to ensure 

the population was open between primary periods; and 3) to investigate the degree of 

immigration/emigration to and from the study area over relatively short intervals.  There 

were 5 primary periods and 11 secondary periods (16 survey days) in this study. 

Secondary periods were carried out in the shortest possible timeframe within 

primary periods to avoid violating the assumption of demographic closure.  One survey 

of the entire area (one secondary period) could be accomplished in one day if the sea state 

remained calm and the total number of dolphins sighted remained relatively low.  Due to 

weather and/or daylight constraints, it was not possible to complete all secondary periods 

in the same timeframe nor was it possible to keep the same timeframe interval between 

secondary periods. 

Robust design survey procedures, photographic treatment, and data analysis 

followed the same protocols as described in Chapter 2.  In addition, data from concurrent 

surveys centered in Murrell’s Inlet (Chapter 2) and Little River were combined and re-

analyzed.  Herein, I focus on the Little River data and the combined dataset. 
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Results 

Little River Mark-Recapture Photo-Identification Surveys 

Surveys in Little River were conducted from August 2014 through August 2015, 

during which 5 primary periods were completed (Table 4).  Primary periods included 2-3 

secondary periods with a total of 16 survey days and 11 secondary periods.  We were 

only able to sample the area three times in August 2014.  Thereafter, only one mark and 

one recapture survey were completed for each primary period.  The time to complete 

each secondary period ranged from 1- 2 days with an interval of 0-2 days between 

surveys.  The interval between secondary periods ranged from 1 to 11 days. 

Over this study, we spent 125 hours on the water off Little River, surveying a total of 

1,296 km on effort (Table 4).  We sighted 75 dolphin groups in Little River (69 on-effort) 

and identified 141 individuals.  The marked proportion ranged from 0.62 in August 2015 

to 0.17 in October of 2014.  Sighting frequency of marked dolphins ranged from 1 to 4, 

and only 28 dolphins were sighted more than once (Fig. 8).  The Little River discovery 

curve increased steeply between late August/early September and late October/early 

November 2014 and had a gentler slope thereafter (Fig. 9). 

Mean Sightings-per-unit-effort (SPUE) were similar for the LR 1.5 km track (1.57) 

and the NC 0.3 km track (1.37).  The 0.5 km track had a mean SPUE of 0.59 dolphins/km 

and the ICW had the lowest SPUE of 0.03 dolphins/km. These differences were only 

significant (Kruskal-Wallis Χ
2

(3) = 9.252, p = 0.026) for the ICW track (Dunn’s test p= 

0.0358 0.5 km track, p = 0.0023 1.5 km track, and p = 0.0077 0.3 km track).  Mean SPUE 

did not significantly differ between primary periods (Kruskal-Wallis Χ
2

(3) = 3.382, p = 
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0.496) or between survey seasons  (Kruskal-Wallis Χ
2

(3) = 3.247, p = 0.355).  August 

surveys were defined as summer, mid-October-mid-November surveys were defined as 

fall, March surveys were defined as winter, and May surveys were defined as spring. 

Model Selection and Model Derived Estimates 

Most primary periods had no recaptures, except for August 2014 (n = 4) and 

August 2015 (n = 12), thus an artificial recapture was added to correct for small sample 

size and allow for parameter estimation.  Package Rcapture (Baillargeon and Rivest 

2007) in program R (R Core Team 2015) was used to fit six classical closed population 

models to each primary period.  Best fitting models were selected based on the lowest 

AICc value.  These models were then compared to the null model estimates derived from 

either the Lincoln-Petersen method or the Schnabel method.  Both best fitting R models 

and ‘manual’ estimation methods yielded similar trends with highest abundance in the 

fall (late October/early November) of 2014 (�̂�= 675, 95% C.I. = 71-885 and �̂� = 504, 

95% C.I. = 95-9,882 respectively) and lowest abundance in the winter (early March) of 

2014 (�̂�= 30, 95% C.I. = 13-61 and �̂� = 22, 95% C.I. = 4-431, respectively).  When 

adjusted for the proportion of marked individuals, the 2015 winter and summer surveys 

had similarly low abundance estimates (Fig. 10). 

Program MARK 6.2 (Cooch and White 2006) was used to fit 12 robust models 

that included variation in capture probability under either random or Markovian 

emigration.  These models were tested against four null models of ‘no emigration’ and 

‘no movement’.  Three different Markovian models had similar AICc values and thus 

estimates from these models were averaged to account for model uncertainty (Burnham 

and Anderson 2002) (Table 5).  Averaged abundance estimates varied from 27 (95% CI 
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26-119, CV = 0.72) in March 2014 to 826 (95% CI 253-3,136, CV = 0.74) in the fall 

2014.  The total population abundance (after adjusting for θ) varied from 69 (95% CI 61-

98, CV = 0.11) in the summer 2015 to 4,820 (95% CI 1,547-18,447, CV = 0.74) in the 

fall of 2014 (Table 4). 

Estimates of apparent survival probability (S), emigration (γ”) and immigration 

(1-γ’) were also averaged between the best 3 models and between primary periods (Table 

6).  Apparent survival probability had the lowest estimate between March and May 

(0.50). The emigration probability (γ”) was lowest between August and November and 

highest between November and March and March and May, decreasing again between 

May and August.  The immigration probability (1-γ’) varied from 0.81 between March 

and May and 1.00 for the other primary periods. 

Murrell’s Inlet and Little River Combined Mark-Recapture Photo-Identification 

Surveys 

There were four primary periods during which we were able to survey both Murrell’s 

Inlet (Chapter 2) and Little River (August 2014, October/November 2014, April/May 

2015, and August 2015) (Table 7).  Primary periods included 2-3 secondary periods with 

a total of 27 survey days and 9 secondary periods.  The time to complete each secondary 

period (when all tracks in both areas were surveyed once) ranged from 2-4 days with an 

interval of 0-10 days between surveys.  The interval between secondary periods ranged 

from 1-16 days. 

A total of 174 hours were spent on the water, surveying a total of 1,901.6 km on-

effort for the combined dataset.  We sighted 157 dolphins groups (146 on-effort) and 

identified 392 individuals.  The proportion of marked individuals ranged from 0.52 in 
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August 2015 to 0.13 in October of 2014.  Sighting frequency of marked dolphins ranged 

from 1 to 5, and only 68 dolphins were sighted more than once; 15 of those were seen in 

both areas (Fig. 11).  An additional six dolphins photographed off Little River were 

matched to individuals photographed off Murrell’s Inlet during the previous year.   

The discovery curve from the combined surveys increased at a higher rate between 

August and October/November 2014 (primary periods I and II) and had a slower rate 

thereafter (Fig. 12).  Mean SPUE was not significantly different between transects 

(Kruskal-Wallis Χ
2
(5) = 10.273, p = 0.0678) or between survey areas (Mann-Whitney U 

= 745, p = 0.087).  Mean SPUE per primary period and per season failed the 

homogeneity of variances test (Levene’s test p = 0.0113 and p = 0.01103 respectively), 

thus Kruskal-Wallis was not performed on this dataset. 

Model Selection and Model Derived Estimates 

Most primary periods had no recaptures, except for August 2014 (n = 19) and 

August 2015 (n = 13), thus an artificial recapture was added to correct for small sample 

size and allow for parameter estimation.  Package Rcapture (Baillargeon and Rivest 

2007) in program R (R Core Team 2015) was used to fit 6 classical closed population 

models to each primary period.  Best fitting models were selected based on the lowest 

AICc value.  These models were then compared to the null model estimates derived from 

either the Lincoln-Petersen method or the Schnabel method.  Both best fitting R models 

and ‘manual’ estimation methods yielded similar trends with highest abundance in the 

fall of 2014 (�̂� = 1,141, 95% C.I. = 128-2,997; and �̂� = 1,260, 95% C.I. = 377-7,099, 

respectively) and lowest abundance in the summer of 2015 (�̂� = 136, 95% C.I. = 100-

213; and �̂�= 129, 95% C.I. = 84-270, respectively). 
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Program MARK (Cooch and White 2006) was used to fit 12 robust models that 

included variation in capture probability under either random or Markovian emigration.  

These models were tested against four null models of ‘no emigration’ and ‘no 

movement’.  Three different Markovian models had similar AICc values and thus 

estimates from these models were average to account for model uncertainty (Burnham 

and Anderson 2002) (Table 8).  Estimates from all models followed the same general 

trend with increased number of dolphins in the fall and decreased number of dolphins in 

the 2015 summer (Fig. 13).  Averaged abundance estimates varied from 142 (95% CI 

105-219) in August 2015 to 928 (95% CI 464-2044) in the fall 2014.  The total 

population abundance (after adjusting for θ) varied from 274 (95% CI 203-423) in the 

summer 2015 to 7,401 (95% CI 1,291-16,302) in the fall of 2014 (Table 9). 

Estimates of apparent survival probability (S), emigration (γ”) and immigration 

(1-γ’) were also averaged between the best three models and between primary periods 

(Table 9).  Apparent survival probability was only less than 1 between May and July.  

The emigration probability (γ”) varied from 0.69 to 0.82 and the immigration probability 

(1-γ’) was lowest between October and April and highest between April and July, 

contrary to field observations.  

Movement, Distribution, and Stock Membership 

In Little River, we encountered 30 individuals in more than one primary period.  Most 

of those (14) were resighted inter-annually in August.  The combined dataset of 

concurrent surveys yielded 7 additional resightings between August 2014 and May 2015 

(Fig. 14).  The majority of dolphins resighted in Little River and in concurrent surveys 

off Murrell’s Inlet occurred within the warm season, indicating a seasonal shift in stock 
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composition.  Mean water temperature for northern South Carolina is described to be 

semi-tropical (above 19 °C) between April and late November, when it shifts to 

temperate (below 15 °C) (Armstrong, 2014). 

Comparisons of the combined dataset against CCU’s southern North Carolina catalog 

resulted in 23 dolphins that were sighted in more than one month in at least 2 survey 

areas (Fig. 15).  Of those, 14 dolphins were sighted in inshore waters of southern North 

Carolina and were designated as members of the SNCESS.  Most of the SNCESS 

dolphins were observed during the summer of 2014 in estuarine and nearshore waters off 

southern North Carolina and during the winter and spring in coastal waters off of Little 

River and/or Murrells Inlet.  The remaining 9 dolphins were sighted during the warm 

months between March and October. 

Catalog comparisons on a subset of D1 (n = 17) and D2 dolphins sighted 3 or more 

times (n = 21) off Little River with CCU’s historical catalog and with adjacent areas via 

the MABDC yielded eight matches (Fig. 16).  Four dolphins were matched to the 

Charleston catalog, two were sighted in both areas within the warm season and the other 

two were sighted during the warm season in northern South Carolina and in Charleston in 

mid-November.  Dorsal fin matches with southern North Carolina included three 

dolphins with estuarine sightings and one dolphin with a historical match between CCU’s 

catalog and the UNCW catalog (Urian pers. comm.); potentially a coastal dolphin.  

Historical matches followed the same trend described above for southern North Carolina 

with members of the SNCESS seen during the warm season in southern North Carolina 

and in the cold season of northern South Carolina. 
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Discussion 

In Little River, abundance estimates were consistently fewer than 100 dolphins 

year-round, except during late October/early November when abundance was estimated 

at 4,724 individuals.  The combined dataset showed a different trend with lowest 

abundance estimates in August 2015 (Ñ = 268), similar estimates between August 2014 

and May 2015 (Ñ ~ 1,200) and highest estimates in late October/early November (Ñ = 

10,240 dolphins).  Abundance estimates from the Murrell’s Inlet area showed a more 

consistent trend with lowest estimates during the cold months (December – April) and 

highest estimates during the fall, and especially during late fall (late October/early 

November) when estimates are believed to represent the migratory peak attributed to the 

SM stock (Chapter 2). 

As previously discussed in Chapter 2, the small number of recaptures within a 

primary period can result in a strong bias in the estimates of population parameters 

(Krebs 1988, Williams et al. 2002).  Individuals were only recaptured during the summer 

primary periods in both the Little River dataset and the combined dataset and thus focus 

will be given to those population parameters.  Similarly, Murrell’s Inlet surveys achieved 

enough recaptures only during the summer (Chapter 2) and thus provide a basis for 

comparisons. 

In Murrell’s Inlet, summer estimates were lowest in July/August 2013 (Ñ =371, 

CV 0.17) and higher in both June-September 2014 (Ñ = 1,441, CV 0.14) and July/August 

2015, although the latter was not precise (Ñ = 1,149, CV 0.95).  Moreover, the summer 

2014 estimate included the combination of two primary periods; however, the 
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August/September primary period alone yielded a similar estimate of 1,063 dolphins.  

Concurrent surveys off Little River occurred in both August/September 2014 and 

July/August 2015.  Estimates from Little River alone were similar for both of summers 

(Ñ = 77, CV 0.34 and Ñ = 69, CV 0.62 respectively) given the overlapping confidence 

intervals (Table 6).  Estimates for the combined dataset were highest in the summer of 

2014 (Ñ = 1,193, CV 0.19) and lowest in the summer of 2015 (Ñ = 268, CV 0.19), 

following the same trend as the Murrell’s Inlet estimates alone.  Independent of survey 

area or calculation methods, estimates of abundance were consistently higher in late 

October/early November, supporting that dolphins do migrate to northern South Carolina 

during that time. 

Little River Inlet is described as the boundary for the South Carolina/Georgia 

coastal stock and the Southern North Carolina Estuarine System Stock (SNCESS).  If this 

boundary is correct, we would expect to find SNCESS dolphins in Little River but not off 

of Murrell’s inlet, as well as limited matches between the North Carolina and the South 

Carolina portion of Little River surveys.  Moreover, matches with adjacent areas should 

reveal movement between northern South Carolina and the Charleston area and limited 

movement, perhaps only during the fall migratory peak, with southern North Carolina.  

Data from this study suggest just the opposite as several members of the SNCESS 

were observed in Little River and in coastal waters 70 km south of their proposed 

southern boundary during the colder months (Chapter 2).  These results support the 

seasonal shift in stock distribution described by NMFS but suggest a boundary revision 

(Appendix C).  Moreover, these data suggest a potential winter overlap between the 

SNCESS and the NSCESS in coastal waters during the colder months. 
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Additionally, dorsal fin matching efforts among several catalogs during the 

present study indicate that coastal dolphins routinely range from Cape Fear, NC to 

Winyah Bay, SC during the warm months.  Interestingly, summer dolphins occurring 

between Cape Lookout, NC and the South Carolina border are not included in any stock 

assessment report to date.  Historical efforts to match dorsal fin catalogs found 25% of 

dorsal fins photographed in northern South Carolina were also photographed in southern 

North Carolina, mostly in the Wilmington area (Urian pers. comm.).   

Long-term stranding data support the hypothesis that northern South Carolina 

dolphins are related to southern North Carolina stocks.  McFee et al. (2006) found 

different stranding patterns for neonate dolphins in the northern and southern portion of 

South Carolina.  Neonate strandings were significantly higher in the fall from Little River 

to Murrell’s Inlet, contrasting with the bi-modal peak in the spring and fall for the rest of 

the state (McFee et al. 2006).  Moreover, stranding patterns described for the northern 

portion of South Carolina are similar to those described for the southern portion of North 

Carolina (Thayer et al. 2003), possibly representing a single stock.  Whether these 

dolphins belong to the SM stock or are part of a stock of their own needs to be further 

investigated. 

Alternatively, the SC/GA stock could extend into southern North Carolina during 

the warm months, given that dorsal fin matches with both southern North Carolina and 

Charleston, SC were found during the warm months in the present study.  Sighting 

histories of those dolphins matched with the Charleston catalog suggest these individuals 

belong to coastal stocks given that none of them were sighted within the Charleston 
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Harbor, but were rather sighted in nearshore coastal waters (Speakman, pers. comm.
4
).  

Matches within the warm season most likely include members of the SC/GA stock and 

matches between warm and cold seasons could belong to the SC/GA or the SM stock 

(Appendix B).  However, the SM stock is not described to be present in northern SC 

during the warm months.  Thus, these between-season matches could also represent a 

separate coastal stock.  The lack of year-round resightings in the present study also 

suggests a seasonal migratory pattern for the study area. 

The present study supports that multiple stocks overlap in northern South 

Carolina and that an undefined coastal stock occurs from southern North Carolina to 

northern South Carolina, possibly as far south as Charleston in the summer (Appendix 

C).  Dolphins found between Cape Lookout and the North Carolina/South Carolina 

border during the summer months are currently not included in any stock descriptions.  

Moreover, the northern boundary for the SC/GA coastal stock is artificially defined at the 

North Carolina/South Carolina state boundary; and the seasonal movements of the SM 

stock are defined based on limited data from only 2 satellite tags that did not last a whole 

year. 

Previous coastal stock descriptions included a Southern North Carolina Coastal 

Stock ranging from Cape Lookout, NC to Murrell’s Inlet, SC and distinct South Carolina 

and Georgia coastal stocks (Waring et al. 2008).  Data from the present study support this 

previous description over the current descriptions of stocks occupying the northern South 

Carolina coast.  Additional survey and matching effort is needed to better define the 

boundaries and distribution of coastal stocks. 

                                                             
4 Todd Speakman, March 4th, 2015 
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Conclusion 

Chapter 2 

H1:  The northern South Carolina coast has two coastal bottlenose dolphin stocks;  the 

South Carolina/Georgia Coastal Stock (SC/GA), found in northern South Carolina 

year-round, and the Southern Migratory Coastal Stock (SM), found in northern 

South Carolina in the colder months. 

 

Hypothesis 1 is supported with potential revisions to stock boundaries and seasonal 

movements.  Dorsal fin matches with adjacent areas in the Carolinas support the presence 

of at least two, potentially three coastal dolphin stocks off the northern South Carolina 

coast.  Matches between southern North Carolina and northern South Carolina during the 

summer suggest that either the SM ranges as far south as northern SC during the summer, 

or the SC/GA range extends into southern NC, or that another coastal stock occupies the 

area during the summer.  However, the fall migratory peak attributed to the SM stock was 

reflected in the 2014 late October/early November primary period during which sighting 

frequency was highest and there were no recaptures.   

During the colder months, dolphin sightings were scarce reflecting seasonal movement of 

both coastal stocks.  Dolphins identified during the colder months (December-March) 

were not photographed during any other season, thus the SM stock appears to occupy the 

study area only during late fall.  These data suggest that coastal stock overlap occurs in 

the fall rather than in the winter.  The lack of year-round sightings in the study area 

suggests seasonal movements of all coastal stocks within the study area.  Individually 
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identified dolphins did return to the study area during the spring and summer, however 

spring migration possibly includes both coastal stocks.   

H2:  Summer estimates of local abundance will pertain to the SC/GA Coastal Stock, 

while estimates during other seasons may include members of the SM Coastal 

Stock.  

 

Hypothesis 2 is not supported.  Dolphins photographed off Murrells Inlet during the 

summer months were also photographed in southern North Carolina and in Charleston, 

SC during the warm months.  Dolphins ranging from southern NC to northern SC are not 

described in any stock assessment report to date.  Whether these summer dolphins are 

members of the SC/GA coastal stock or members of an unidentified coastal stock needs 

further investigation. 

H3: Members of the Northern South Carolina Estuarine System Stock will be found in 

coastal waters south and inclusive of Murrell’s Inlet, but their contribution to 

coastal abundance estimates will be negligible. 

 

Hypothesis 3 is supported.  Three members of the NSCESS were photographed in coastal 

waters off Murrell’s Inlet and/or near the mouth of North Inlet.  Given the small number 

of individuals sighted in coastal waters, the NSCESS is not thought to contribute to the 

estimates of abundance in coastal waters. 
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Chapter 3 

H1: Members of the Southern North Carolina Estuarine System Stock will be found in 

and near Little River Inlet, especially in the colder months. 

 

Hypothesis 1 is supported with revision of stock boundaries.  There was a clear southern 

range expansion for SNCESS dolphins in the winter.  During the warm months (May-

October), no estuarine sightings were recorded between Lockwood-Folly and Little River 

Inlet.  In contrast, sightings occurred not only in the Intracoastal Waterway but also in 

coastal waters as far south as Pawley’s Island during the colder months (December-

March). 
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Table 1.  Summary of mark-recapture field efforts during 2013-2015 in coastal waters 

along northern South Carolina. 

Year Primary Secondary 
km on-

effort 

n° of 

sighting

s 

Best Field 

Estimate 

Mean Water 

Temp (range °C) 

2013 I July 29-30 100.86 12 426 27.9 (26.8-28.7) 

2013 I Aug 3-4 101.85 14 125 27.4 (26.5-28.4) 

2013 I Aug 9-10 105.86 8 107 27.6 (27.2-27.8) 

2013 II Oct 4-5 94.69 6 186 24.8 (23.6-25.5) 

2013 II Oct 11-12 102.79 6 143 23.3 (23.6-25.5) 

2013 II Oct 18 103.15 6 167 22.7 (22.0-24.1) 

2013 III Dec 13 107.04 8 109 11.9 (10.6-12.4) 

2013 III Dec 16 and 19 96.95 13 120 12.8 (12.1-13.6) 

2014 IV Feb 16 100.12 2 7 8.1 (7.9-8.3) 

2014 IV Feb 18 and 23 97.03 3 27 10.3 (10.2-10.5) 

2014 IV March 2 100.05 0 0 14.6 

2014 V April 12-13 93.70 11 57 18.8 (16.2-20.8) 

2014 V April 22 and 26 97.90 1 2 17.3 

2014 V April 27 98.73 3 49 19.6 (19.0-20.3) 

2014 VI June 14 98.99 4 30 29.5 (27.1-35.7) 

2014 VI June 19 and 26 98.41 11 187 28.8 (26.0-32.2) 

2014 VI July 1 101.29 7 33 28.3 (27.0-29.0) 

2014 VII Aug 17 99.30 2 92 27.0 

2014 VII Aug 23 101.09 7 179 28.6 (27.0-29.5) 

2014 VII 
Aug 31 Sept 2 and 

11 
97.94 6 91 28.0 (27.0-29.0) 

2014 VIII Oct 21 and 24 90.44 26 546 20.4 (18.0-22.5) 

2014 VIII Nov 4-5 93.55 21 260 19.0 (18.0-19.0) 

2015 IX Apr 22 and May 3 91.63 19 300 19.5 (18.4-20.8) 

2015 IX May 20 and 28 93.21 9 72 24.1(23.5-24.5) 

2015 X July 30 94.77 2 85 29.5 

2015 X Aug 21 99.05 3 37 29.9 (29.4-30.2) 

2015 X Aug 23 92.53 1 15 29.1 

Total 10 27 2,652.92 211  x̄ = 21.9 
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Table 2.  Summary of population parameters estimated under Pollock’s Robust Design Markovian model Mt for each primary period. 

 
Year Primary N̂ θ Ñ C.I. CV MWT (°C) S γ" 1-γ' 

2013 Jul 29-Aug 10 254 0.69 371 285-531 0.17 27.6    

2013 Oct 4-18 1306 0.56 2,332 1,380-4,039 0.28 23.3 1.00 >0.00 N/A 

2013 Dec 13-19 
57 0.32 178 84-584 0.60 

12.5 
1.00 1.00 1.00 

2014 Feb 16-Mar 2 9.4 

2014 April 12-27 19 0.25 76 44-336 0.68 19.0 0.59 1.00 0.00 

2014 June 14-July 1 
418 0.29 1,441 1,128-1,938 0.14 

28.8 
0.76 1.00 0.70 

2014 Aug 17-Sept 11 28.2 

2014 Oct 21-Nov 5 1382 0.09 16,070 6,651-40,279 0.49 19.8 0.99 0.45 1.00 

2015 Apr 22-May 28 482 0.32 1,492 820-3,043 0.36 21.0 0.99 0.80 1.00 

2015 Jul 30-Aug 23 362 0.32 1,149 308-5,752 0.95 29.6 0.68 N/A N/A 
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Table 3.  Program MARK output summarizing model fitness under Pollock’s robust design full likelihood with closed captures. The 

‘Constrains’ column was added to the table to clarify the differences between each model.  Notation (.) denotes constant over time and 

(t) denotes time variation between primary periods.  Capture and recapture probability were assumed to be equal within each primary 

period since photographic capture minimizes behavioral responses to capture (c=p), but these probabilities were allowed to vary 

between primary periods. 

Model Constrains AICc Delta AICc 
AICc 

Weights 
Num. Par Deviance 

{Markovian S(t), g"(t), g'(t), c=p(t)} γ"k = γ"k-1, γ'k = γ'k-1 -2219.2188 0 0.68947 39 -1484.3051 

{Random S(t), g"(t)= g'(t), c=p(t)} γ" = γ' -2215.6331 3.5857 0.11479 37 -1476.2213 

{Markovian S(.), g"(t), g'(t), c=p(t)} constant φ -2215.3208 3.898 0.09819 37 -1475.909 

{Markovian S(t), g"(t), g'(.), c=p(t)} constant  γ' -2215.3039 3.9149 0.09737 37 -1475.8921 

{Markovian S(t), g"(.), g'(t), c=p(t)} constant  γ"  -2200.7519 18.4669 0.00007 38 -1463.5857 

{Random S(.), g"(t)= g'(t), c=p(t)} constant φ, γ" = γ' -2200.5861 18.6327 0.00006 37 -1461.1743 

{Markovian S(.), g"(t), g'(.), c=p(t)} constant φ and γ'  -2200.2487 18.9701 0.00005 38 -1463.0825 

{Markovian S(t), g"(.), g'(.), c=p(t)} constant  γ" and γ' -2194.9279 24.2909 0 37 -1455.5161 

{No_Movement S(t), g"(.), g'(.), c=p(t)}  γ" = 0, γ′' = 1 -2191.3052 27.9136 0 36 -1449.6549 

{No_Emigration S(t), g"(.), g'(.), c=p(t)} γ" = γ' =0 -2191.3052 27.9136 0 36 -1449.6549 

{Markovian S(.), g"(.), g'(t), c=p(t)} constant φ and γ" -2189.753 29.4658 0 37 -1450.3412 

{Random S(t), g"(.)= g'(.), c=p(t)} constant φ and γ" = γ' -2189.5129 29.7059 0 37 -1450.1011 

{Markovian S(.), g"(.), g'(.), c=p(t)} constant φ, γ" and γ' -2185.94 33.2788 0 35 -1442.0582 

{Random S(.), g"(.)= g'(.), c=p(t)} constant φ, γ" = γ' -2178.5627 40.6561 0 35 -1434.6809 

{No_Movement S(.), g"(.), g'(.), c=p(t)} constant φ, γ" = 0, γ′' = 1 -2172.7484 46.4704 0 34 -1426.642 

{No_Emigration S(.), g"(.), g'(.), c=p(t)} constant φ, γ" = γ' = 0 -2172.7484 46.4704 0 34 -1426.642 
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Table 4.  Summary of mark-recapture field efforts in 2014-2015 centered in Little River, northern South Carolina. 

Year Primary Secondary km on-effort 
n° of 

sightings 
Best Field Estimate 

Mean Water Temp 

(range °C) 

2014 I Aug 21 105.01 2 17  

2014 I Aug 28-29 98.46 2 18 26.3 (26.0-26.5) 

2014 I Sept 2 and 10 93.38 5 151 27.7 (27.0-28.0) 

2014 II Oct 25 and 27 120.91 22 327 21.7 (20.0-23.0) 

2014 II Nov 3-4 127.0 14 206 19.0 

2015 III March 9 127.89 8 59 10.5 (9.3-11.6) 

2015 III March 16 127.27 4 20 13.4 (11.9-16.1) 

2015 IV May 2 118.84 5 12 18.7 (18.1-19.5) 

2015 IV May 4 127.42 8 49 21.0 (20.2-21.3) 

2015 V Aug 9 and 13 123.76 1 19 29.1 

2015 V Aug 16 125.84 4 49 29.0 (28.8-29.1) 

Total 5 11 1,295.78 75 927 x̄ = 21.7 
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Table 5. Program MARK output summarizing model fitness under Pollock’s robust design full likelihood with closed captures.  The 

‘Constrains’ column was added to the table to clarify the differences between each model.  Notation (.) denotes constant over time, (t) 

denotes time variation between primary periods.  Capture and recapture probability were assumed to be equal since photographic 

capture minimizes behavioral responses to capture.  Population parameters estimated under the top three models (in bold) were 

average to account for model uncertainty. 

 

Model Constrains AICc Delta AICc AICc Weights Num. Par Deviance

{Markovian S(.) gamma"(t) gamma'(t) c=p(t)}  constant φ -494.64 0 0.44924 19 -298.5685

{Markovian S(.) gamma"(t) gamma'(.) c=p(t)}  constant φ and  γ' -493.63 1.0081 0.27138 18 -295.0686

{Markovian S(t) gamma"(t) gamma'(.) c=p(t)}  constant   γ' -493.11 1.5328 0.20875 19 -297.0358

{Random S(t) gamma"(t)=gamma'(t) c=p(t)}  γ" = γ' -488.94 5.6963 0.02603 20 -295.3948

{Markovian S(t) gamma"(.) gamma'(t) c=p(t)}  constant   γ" -488.06 6.5795 0.01674 19 -291.989

{Random S(t) gamma"(.)=gamma'(.) c=p(t)} constant γ" = γ' -486.74 7.8981 0.00866 18 -288.1785

{Markovian S(t) gamma"(t) gamma'(t) c=p(t)} γ"k = γ"k-1, γ'k = γ'k-1 -486.6 8.0391 0.00807 21 -295.606

{No_Movement S(t) gamma"(.) gamma'(.) c=p(t)} γ" = 0, γ′' = 1 -484.88 9.7623 0.00341 18 -286.3143

{No_Emigration S(t) gamma"(.)= gamma'(.) c=p(t)}  γ" = γ' = 0 -484.88 9.7623 0.00341 18 -286.3144

{Markovian S(t) gamma"(.) gamma'(.) c=p(t)} constant  γ", γ' -484.28 10.3571 0.00253 19 -288.2114

{Markovian S(.) gamma"(.) gamma'(t) c=p(t)} constant φ, γ" -483.44 11.2052 0.00166 18 -284.8715

{Markovian S(.) gamma"(.) gamma'(.) c=p(t)} constant φ, γ", γ' -477.26 17.3783 0.00008 18 -278.6984

{Random S(.) gamma"(t)=gamma'(t) c=p(t)}  constant φ, γ" = γ' -474.21 20.4347 0.00002 20 -280.6564

{No_Movement S(.) gamma"(.) gamma'(.) c=p(t)} constant φ, γ" = 0, γ′' = 1 -473.38 21.2615 0.00001 17 -272.3536

{No_Emigration S(.) gamma"(.)=gamma'(.) c=p(t)}  constant φ, γ" = γ' = 0 -473.38 21.2615 0.00001 17 -272.3536

{Random S(.) gamma"(.)=gamma'(.) c=p(t)}  constant φ, γ" = γ' -473.26 21.3825 0.00001 18 -274.6941
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Table 6.  Summary of population parameters estimated under Pollock’s Robust Design Markovian model Mt for each primary period 

off Little River. 

Year Primary N̂ θ Ñ C.I. CV MWT (°C) S γ" 1-γ' 

2014 Aug 21-Sept 10 34 0.44 77 100-175 0.34 27.1 N/A N/A N/A 

2014 Oct 25-Nov 4 826 0.17 4,820 8,110-18,289 0.74 20.7 1.00 0.21 N/A 

2015 March 3-16 27 0.29 92 134-411 0.72 11.5 1.00 1.00 1.00 

2015 May 2-4 33 0.41 82 102-193 0.31 20.1 0.50 1.00 0.81 

2015 Aug 9-16 43 0.62 69 77-98 0.62 29.0 0.72 0.32 1.00 
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Table 7.  Summary of mark-recapture field efforts in 2014-2015 for the combined dataset of concurrent surveys off Murrell’s Inlet and 

Little River, northern South Carolina. 

Year Area Primary Secondary km on-effort n° of sightings Best Field Estimate Mean Water Temp (range °C) 

2014 MI I Aug 17 99.30 2 92 27.0 

2014 LR I Aug 21 105.01 2 17  

2014 MI I Aug 23 101.09 7 179 28.6 (27.0-29.5) 

2014 LR I Aug 28-29 98.46 2 18 26.3 (26.0-26.5) 

2014 LR I Sept 2 and 10 93.38 5 90 27.7 (27.0-28.0) 

2014 MI I Aug 31 Sept 2 and 11 97.94 6 151 28.0 (27.0-29.0) 

2014 MI II Oct 21 and 24 90.44 26 546 20.4 (18.0-22.5) 

2014 LR II Oct 25 and 27 120.91 22 327 21.7 (20.0-23.0) 

2014 LR II Nov 3-4 127.0 14 206 19.0 

2014 MI II Nov 4-5 93.55 21 260 19.0 (18.0-19.0) 

2015 MI III Apr 22 and May 3 91.63 19 300 19.5 (18.4-20.8) 

2015 LR III May 2 118.84 5 12 18.7 (18.1-19.5) 

2015 LR III May 4 127.42 7 49 21.0 (20.2-21.3) 

2015 MI III May 20 and 28 93.21 9 72 24.1(23.5-24.5) 

2015 MI IV July 30 94.77 2 85 29.5 

2015 LR IV Aug 9 and 13 123.76 1 19 29.1 

2015 LR IV Aug 16 125.84 4 49 29.0 (28.8-29.1) 

2015 MI IV Aug 21 99.05 3 37 29.9 (29.4-30.2) 

Total  4 9 1901.60 157   



Silva 

73 

Table 8.  Program MARK output summarizing model fitness under Pollock’s robust design full likelihood with closed captures.  The 

‘Constrains’ column was added to the table to clarify the differences between each model.  Notation (.) denotes constant over time, (t) 

denotes time variation between primary periods.   Capture and recapture probability were assumed to be equal since photographic 

capture minimizes behavioral responses to capture.  Population parameters estimated under the top three models (in bold) were 

average to account for model uncertainty. 

Model Constrains AICc Delta AICc 

AICc 

Weights Num. Par Deviance 

{Markovian S(.) gamma"(.) gamma'(t) p=c(t)} constant φ and γ" -2156.69 0 0.47098 14 -855.1624 

{Markovian S(t) gamma"(.) gamma'(t) p=c(t)} constant  γ"  -2156.3 0.3878 0.38796 15 -856.9034 

{Markovian S(.) gamma"(t) gamma'(t) p=c(t)} constant φ -2154.17 2.5219 0.13347 16 -856.9069 

{Markovian S(t) gamma"(t) gamma'(.) p=c(t)} constant γ'  -2147.297 9.3954 0.00429 17 -852.1803 

{Markovian S(t) gamma"(.) gamma'(.) p=c(t)} constant  γ"and γ' -2143.996 12.6963 0.00082 16 -846.7325 

{No Emigration S(t) gamma"(.)=gamma'(.) p=c(t)} γ" = γ' =0 -2143.488 13.2047 0.00064 15 -844.0864 

{No Movement S(t) gamma"(.)=gamma'(.) p=c(t)}  γ" = 0, γ′' = 1 -2143.488 13.2047 0.00064 15 -844.0864 

{Markovian S(t) gamma"(t) gamma'(t) p=c(t)} γ"k = γ"k-1, γ'k = γ'k-1 -2142.863 13.8294 0.00047 17 -847.7463 

{Random S(t) gamma"(t)=gamma'(t) p=c(t)} γ" = γ' -2142.25 14.4422 0.00034 16 -844.9866 

{Random S(t) gamma"(.)=gamma'(.) p=c(t)} constant γ" = γ' -2141.591 15.1017 0.00025 16 -844.3271 

{Markovian S(.) gamma"(t) gamma'(.) p=c(t)} constant φ and γ'  -2139.074 17.6182 0.00007 17 -843.9575 

{Random S(.) gamma"(t)=gamma'(t) p=c(t)} constant φ and γ" = γ' -2138.869 17.8239 0.00006 17 -843.7518 

{Markovian S(.) gamma"(.) gamma'(.) p=c(t)} constant φ, γ" and γ' -2130.635 26.0572 0 16 -833.3717 

{Random S(.) gamma"(.)=gamma'(.) p=c(t)} constant φ and γ" = γ' -2129.391 27.3017 0 15 -829.9894 

{No Emigration S(.) gamma"(.)=gamma'(.) p=c(t)} constant φ, γ" = γ' = 0 -2121.421 35.2712 0 14 -819.8913 

{No Movement S(t) gamma"(.)=gamma'(.) p=c(t)}  γ" = 0, γ′' = 1 -2121.421 35.2712 0 14 -819.8913 
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Table 9.  Summary of population parameters estimated under Pollock’s Robust Design 

Markovian model Mt for each primary period during concurrent surveys off Murrell’s 

Inlet and Little River. 

Year Primary N̂ θ Ñ C.I. CV 
MWT 

(°C) 
S γ" 1-γ' 

2014 
Aug 17-

Sept 11 
331 0.44 1,039 

876 

1,773 
0.19 27.65 N/A N/A N/A 

2014 
Oct 21-

Nov 5 
928 0.17 10,049 

3,597 

13,821 
0.40 20.25 1.00 0.70 N/A 

2015 
Apr 22-

May 28 
552 0.41 1,521 

1,099 

2,139 
0.19 20.55 1.00 0.69 0.67 

2015 
Jul 30 – 

Aug 23 
142 0.62 249 

216 
461 

0.19 29.30 0.75 0.82 0.00 
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Figure 1.  Study Area including survey routes.  
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Figure 2. Sighting frequency of marked individual dolphins seen during Murrell’s Inlet 

surveys from 2013-2015. It includes on and off effort sightings. Note most marked 

individuals were only sighted once. 
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Figure 3.  Discovery Curve of marked dolphins sighted during Murrell’s Inlet surveys from 2013-2015.  The rate of discovery of new 

individuals increased between summer and fall plateaued during winter and spring, increased steeply between spring and summer, and 

kept increasing at a slower rate during Year 2. 
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Figure 4.  Population size and corresponding 95% confidence intervals estimated using the Lincoln-Petersen method or the Schnabel 

method, best fitting models in Rcapture (R), and the robust design with Markovian emigration model (MARK 6.2). 
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Figure 5.  Dorsal fin matches photographed during the present study and photo-ID studies off Little River (August 2014-August 2015) and 

southern North Carolina (June-August 2014 and December 2014).  Each shape represents an individual dolphin.  Mid-November-mid-April 

were considered cold, mid-April-mid-May and mid-October-mid-November were considered transition, and mid-May-mid-October 

were considered warm months. 
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Figure 6.  Dorsal fin matches photographed during the present study and historical photo-ID studies off the Carolinas.  Each shape represents an 

individual dolphin.  Mid-November-mid-April were considered cold, mid-April-mid-May and mid-October-mid-November were considered 

transition, and mid-May-mid-October were considered warm months.  
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Figure 7.  Study areas including survey routes.  
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Figure 8. Sighting frequency of marked individual dolphins photographed during Little River surveys from 2014-2015.  It includes on 

and off effort sightings. Note most marked individuals were only sighted once. 
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Figure 9.  Discovery Curve of marked dolphins sighted during Little River surveys from 2014-

20015.  Note the steep increase between summer and fall and the gentle increase thereafter. 
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Figure 10.  Population size and corresponding 95% confidence intervals estimated using the Schnabel method, best fitting model in 

Rcapture (R), and the robust design with Markovian emigration model (MARK 6.2). 
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Figure 11. Sighting frequency of marked individual dolphins photographed during 

Murrell’s Inlet and Little River surveys from 2014-2015.  It includes on and off effort 

sightings.  Note most marked individuals were only sighted once. 
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Figure 12.  Discovery Curve of marked dolphins sighted during Murrell’s Inlet and Little 

River surveys from 2014-20015.  The discovery curve from the combined surveys 

increased at a higher rate between summer and fall and had a slower rate thereafter. 
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Figure 13.  Population size and corresponding 95% confidence intervals estimated using the LP method (Schnabel method was 

used for August surveys), best fitting model in Rcapture  (R), and the robust design with Markovian emigration model (MARK 

6.2). 
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Figure 14.  Dorsal fin matches photographed during concurrent surveys off Murrell’s Inlet and Little River (August 2014-

August 2015).  Each shape represents an individual dolphin. Mid-November-mid-April were considered cold, mid-April-mid-

May and mid-October-mid-November were considered transition, and mid-May-mid-October were considered warm months. 
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Figure 15.  Dorsal fin matches photographed during concurrent surveys off Murrell’s Inlet and Little River (August 2014-

August 2015) and during photo-ID surveys off southern North Carolina.  Each shape represents an individual dolphin.  Mid-

November-mid-April were considered cold, mid-April-mid-May and mid-October-mid-November were considered transition, 

and mid-May-mid-October were considered warm months.  Shapes containing marks represent members of the SNCESS. 
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Figure 16.  Dorsal fin matches photographed during concurrent surveys off Murrell’s Inlet and Little River (August 2014-

August 2015) and during photo-ID surveys off the Carolinas.  Each shape represents an individual dolphin.  Mid-November-

mid-April were considered cold, mid-April-mid-May and mid-October-mid-November were considered transition, and mid-

May-mid-October were considered warm months.  Shapes with internal marks represent members of the SNCESS. 
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Appendix A: Summary of bottlenose dolphin group sightings.  
 

Appendix A, Table 1. Summary of group sightings of bottlenose dolphins during 

Murrell’s Inlet surveys between July 2013 and August 2015. 

Date 
Sighting 

Number 

Sea 

State 

Water temp 

(°C) 

Depth 

(m) 

Dolphin 

Best 

Calf 

Best 

Neonate 

Best 

7/29/2013 1 2 28.4 6.7 25 0 0 

7/29/2013 2 2 28.3 6.6 20 4 0 

7/29/2013 3 3 28.7 8.2 20 3 0 

7/29/2013 4 3 28.6 7.5 32 2 0 

7/30/2013 1 2 28.0 4.6 2 1 0 

7/30/2013 2 2 26.8 5.6 120 15 4 

7/30/2013 3 2 27.9 6.8 120 15 4 

7/30/2013 4 2 27.2 5.2 35 8 0 

7/30/2013 5 2 27.8 6.9 12 1 0 

7/30/2013 6 2 28.1 8.0 23 2 0 

7/30/2013 7 3 28.0 6.4 8 0 0 

7/30/2013 8 3 27.1 5.7 9 2 1 

8/3/2013 1 3 26.7 7.4 20 1 0 

8/3/2013 2 2 26.7 7.8 14 2 0 

8/3/2013 3 2 26.9 7.2 

   8/3/2013 4 2 27.6 5.3 25 2 0 

8/3/2013 5 3 27.7 3.2 5 1 0 

8/3/2013 6 

      8/3/2013 7 3 27.6 6.2 2 0 0 

8/3/2013 8 3 28.4 4.6 2 0 0 

8/4/2013 1 2.5 26.5 8.6 2 0 0 

8/4/2013 2 2 26.8 7.2 2 0 0 

8/4/2013 3 1 27.6 6.8 12 0 0 

8/4/2013 4 1 28.1 6.1 9 0 0 

8/4/2013 5 1 27.7 6.6 30 0 0 

8/4/2013 6 1 27.6 4.8 2 0 0 

8/9/2013 1 2.5 27.7 7.5 1 0 0 

8/9/2013 2 2.5 27.7 7.9 1 0 0 

8/9/2013 3 3 27.2 8.8 45 6 0 

8/9/2013 4 3 27.8 

 

15 0 0 

8/9/2013 5 3 27.4 7.7 6 1 0 

8/9/2013 6 3 27.8 6.2 8 2 0 
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Date Sighting 

Number 

Sea 

State 

Water temp 

(°C) 

Depth 

(m) 

Dolphin 

Best 

Calf 

Best 

Neonate 

Best 

8/10/2013 1 1.5 27.7 4.9 23 0 0 

8/10/2013 2 3 27.5 8.5 8 1 0 

10/4/2013 1 2 24.1 7.5 60 12 2 

10/4/2013 2 1.5 24.9 6.1 22 1 1 

10/5/2013 1 1.5 23.6 9.0 50 10 5 

10/5/2013 2 1 25.1 8.3 50 12 5 

10/5/2013 3 1.5 25.5 6.1 1 0 0 

10/5/2013 4 1.5 25.3 5.0 3 0 0 

10/11/2013 1 1.5 22.0 8.3 54 15 2 

10/11/2013 2 2 22.7 10.5 1 0 0 

10/12/2013 1 2 22.0 4.5 32 12 5 

10/12/2013 2 1.5 22.4 8.1 40 8 4 

10/12/2013 3 1.5 22.3 8.3 9 0 0 

10/12/2013 4 1.5 

  

7 0 0 

10/18/2013 1 1.5 22.2 5.4 18 3 0 

10/18/2013 2 1 22.0 6.1 5 0 0 

10/18/2013 3 0.5 22.0 6.8 40 0 0 

10/18/2013 4 0.5 22.3 7.5 100 3 2 

10/18/2013 5 1 23.4 7.8 2 0 0 

10/18/2013 6 1 24.1 4.1 2 0 0 

12/13/2013 1 2 

  

1 

  12/13/2013 2 2 10.6 2.4 7 1 0 

12/13/2013 3 2 12.4 6.2 4 0 0 

12/13/2013 4 1.5 12.4 6.0 18 

  12/13/2013 5 1 12.1 7.7 2 0 0 

12/13/2013 6 1 11.9 7.5 4 0 0 

12/13/2013 7 1 12.1 9.2 65 

  12/13/2013 8 1 11.8 8.2 8 0 0 

12/16/2013 3 3 12.5 7.8 10 0 0 

12/16/2013 1 1 13.0 8.0 2 0 0 

12/16/2013 2 1.5 12.6 4.0 2 0 0 

12/19/2013 1 1 12.3 8.2 3 0 0 

12/19/2013 2 0.5 12.1 8.0 10 0 0 

12/19/2013 3 0.5 13.2 9.6 27 

  12/19/2013 4 0.5 13.0 8.9 3 0 0 

12/19/2013 5 0 13.1 9.2 8 0 1 

12/19/2013 6 0 12.4 7.8 2 0 0 

12/19/2013 7 0 13.6 8.8 13 3 0 

12/19/2013 8 0 13.6 6.5 4 0 0 
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Date Sighting 

Number 

Sea 

State 

Water temp 

(°C) 

Depth 

(m) 

Dolphin 

Best 

Calf 

Best 

Neonate 

Best 

12/19/2013 9 0.5 12.7 6.9 30 

  12/19/2013 10 1 12.4 7.0 6 0 0 

2/16/2014 1 3 8.3 1.5 2 0 0 

2/16/2014 2 1 7.9 3.8 5 0 0 

2/23/214 1 1 10.2 6.9 17 4 0 

2/23/214 2 0.5 10.3 8.3 8 0 0 

2/23/214 3 0.5 10.5 9.0 2 0 0 

4/12/2014 1 

   

4 

  4/12/2014 2 1.5 16.2 

 

2 

  4/12/2014 3 1.5 16.2 

 

28 3 0 

4/12/2014 4 3 

  

4 0 0 

4/12/2014 5 3 

  

5 0 0 

4/12/2014 6 4 

  

1 0 0 

4/13/2014 1 0.5 19.3 7.0 4 0 0 

4/13/2014 2 0.5 20.6 8.0 3 0 0 

4/13/2014 3 0.5 20.8 8.0 2 0 0 

4/13/2014 4 0 18.6 3.6 2 0 0 

4/13/2014 5 0 19.6 3.9 2 0 0 

4/26/2014 1 

  

4.4 2 0 0 

4/27/2014 1 1 19.0 10.0 1 0 0 

4/27/2014 2 1 19.6 5.1 47 1 1 

4/27/2014 3 3 20.3 

 

1 0 0 

6/14/2014 1 1.5 27.1 8.0 4 0 0 

6/14/2014 2 1 27.7 8.0 8 0 0 

6/14/2014 3 1 27.6 5.2 3 0 0 

6/14/2014 4 3 35.7 7.6 15 1 0 

6/19/2014 1 2 26.0 5.4 1 0 0 

6/19/2014 2 3 26.0 6.8 3 0 0 

6/19/2014 3 2 27.0 8.3 45 1 0 

6/19/2014 4 2 26.0 8.4 15 0 0 

6/19/2014 5 3 27.0 7.3 1 0 0 

6/26/2014 1 2 32.2 4.0 3 1 0 

6/26/2014 2 2 32.2 6.7 6 1 0 

6/26/2014 3 1.5 32.2 7.1 3 0 0 

6/26/2014 4 2 31.8 6.8 8 0 0 

6/26/2014 5 1 28.3 6.1 70 7 0 

6/26/2014 6 1 28.3 5.6 32 0 0 

7/1/2014 1 0.5 27.0 

 

4 0 0 

7/1/2014 2 0.5 28.0 

 

7 0 0 
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Date Sighting 

Number 

Sea 

State 

Water temp 

(°C) 

Depth 

(m) 

Dolphin 

Best 

Calf 

Best 

Neonate 

Best 

7/1/2014 3 0.5 28.0 

 

6 0 0 

7/1/2014 4 0.5 28.0 

 

12 1 0 

7/1/2014 5 0.5 29.0 

 

1 0 0 

7/1/2014 6 1 29.0 

 

1 0 0 

7/1/2014 7 1 29.0 

 

2 0 0 

8/17/2014 1 3.0 27.0 7.0 7 1 0 

8/17/2014 2 3.0 

 

3.7 85 10 3 

8/23/2014 1 0.5 27.0 7.8 1 0 0 

8/23/2014 2 0.0 29.0 7.4 1 0 0 

8/23/2014 3 0.0 29.0 7.1 1 0 0 

8/23/2014 4 0.0 29.5 7.7 20 0 0 

8/23/2014 5 0.0 

  

5 0 0 

8/23/2014 6 1.0 

 

7.2 150 10 1 

8/23/2014 7 3.0 

 

5.7 1 0 0 

8/31/2014 1 1.5 29.0 3.8 27 3 0 

9/2/2014 1 1.0 29.0 7.6 1 0 0 

9/11/2014 1 0.5 

 

4.5 15 1 1 

9/11/2014 2 0.5 

  

5 0 0 

9/11/2014 3 0.5 27.0 8.6 3 0 0 

9/11/2014 4 0.5 27.0 8.9 40 1 1 

10/21/2014 1 1.5 20.1 

 

65 10 0 

10/21/2014 2 1.5 20.0 7.2 20 0 0 

10/21/2014 3 3.0 20.0 9.2 2 0 0 

10/21/2014 4 1.0 20.0 3.8 1 0 0 

10/21/2014 5 1.0 22.5 4.0 20 5 0 

10/21/2014 6 1.0 22.5 7.1 42 12 1 

10/21/2014 7 1.0 22.5 6.7 20 0 0 

10/21/2014 8 1.0 22.0 7.2 20 0 0 

10/21/2014 9 1.0 21.0 6.3 32 0 0 

10/21/2014 10 1.0 22.0 6.6 20 3 0 

10/21/2014 11 0.0 

 

1.3 1 0 0 

10/24/2014 1 2.0 18.0 6.0 60 0 1 

10/24/2014 2 2.0 18.0 7.2 5 0 0 

10/24/2014 3 3.0 19.0 8.2 30 0 0 

10/24/2014 4 1.5 19.5 6.7 65 7 0 

10/24/2014 5 1.0 20.0 7.4 40 7 0 

10/24/2014 6 1.0 20.0 7.4 8 0 0 

10/24/2014 7 1.0 19.5 7.5 8 0 0 

10/24/2014 8 1.0 20.5 7.2 4 0 0 
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Date Sighting 

Number 

Sea 

State 

Water temp 

(°C) 

Depth 

(m) 

Dolphin 

Best 

Calf 

Best 

Neonate 

Best 

10/24/2014 9 1.0 21.5 7.8 10 0 0 

10/24/2014 10 1.0 22.5 8.2 4 0 0 

10/24/2014 11 1.0 20.0 7.4 35 5 2 

10/24/2014 12 1.0 20.0 7.6 4 0 0 

10/24/2014 13 1.0 20.0 6.5 14 0 1 

10/24/2014 14 1.0 20.0 6.0 45 0 2 

10/24/2014 15 1.0 20.0 

 

3 0 0 

11/4/2014 5 1.0 19.0 7.5 1 0 0 

11/4/2014 6 0.5 19.0 

 

25 1 1 

11/4/2014 7 1.0 19.0 7.2 2 0 0 

11/4/2014 8 1.0 19.0 

 

1 0 0 

11/4/2014 9 0.5 19.0 7.0 2 0 0 

11/4/2014 10 1.0 19.0 7.0 28 3 0 

11/4/2014 11 1.0 19.0 7.0 3 0 0 

11/4/2014 12 1.0 19.0 7.6 7 1 0 

11/4/2014 13 1.0 19.0 

 

20 2 0 

11/4/2014 14 0.5 19.0 

 

15 1 0 

11/5/2014 1 0.0 18.0 6.8 42 1 0 

11/5/2014 2 0.0 19.0 6.6 2 0 0 

11/5/2014 3 0.5 19.0 7.5 3 0 0 

11/5/2014 4 0.5 19.0 6.9 10 0 0 

11/5/2014 5 0.0 19.0 6.1 5 1 0 

11/5/2014 6 0.0 19.0 6.7 23 2 0 

11/5/2014 7 0.0 19.0 4.7 32 2 0 

11/5/2014 8 0.0 19.0 5.4 7 0 0 

11/5/2014 9 0.0 19.0 6.0 5 1 0 

11/5/2014 10 0.0 19.0 6.1 12 0 0 

11/5/2014 11 0.0 19.0 6.4 15 1 0 

1/21/2015 1 0.5 12.0 3.0 3 1 0 

3/8/2015 1 0.5 9.3 7.2 4 0 0 

3/8/2015 2 0.5 9.3 7.5 8 1 0 

3/8/2015 3 0.5 9.3 

 

4 

  3/8/2015 4 1.0 9.7 2.7 2 1 0 

3/10/2015 1 0.5 10.0 7.8 6 0 0 

3/10/2015 2 0.5 10.8 7.8 4 0 0 

3/10/2015 3 0.5 10.8 7.8 4 0 0 

3/10/2015 4 0.5 10.8 6.6 18 3 0 

3/10/2015 5 0.5 11.0 5.1 5 2 0 

4/22/2015 1 1.5 18.4 6.8 4 0 0 
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Date Sighting 

Number 

Sea 

State 

Water temp 

(°C) 

Depth 

(m) 

Dolphin 

Best 

Calf 

Best 

Neonate 

Best 

4/22/2015 2 1.0 19.0 10.4 5 2 0 

4/22/2015 3 1.0 19.1 9.4 42 3 0 

4/22/2015 4 0.5 19.4 6.6 7 0 0 

4/22/2015 5 0.0 19.6 8.3 6 1 0 

4/22/2015 6 0.0 19.6 8.3 4 0 0 

4/22/2015 7 1.0 19.6 5.8 30 0 0 

4/22/2015 8 0.5 19.2 7.8 30 1 0 

4/22/2015 9 1.0 19.1 7.8 25 3 1 

4/22/2015 10 1.0 18.8 8.0 7 2 0 

4/22/2015 11 1.0 19.0 7.9 5 0 0 

4/22/2015 12 2.0 19.2 6.7 2 0 0 

5/3/2015 1 0.5 19.7 7.8 35 4 0 

5/3/2015 2 0.0 19.7 8.6 4 1 0 

5/3/2015 3 0.0 19.5 8.2 3 0 0 

5/3/2015 4 0.0 20.4 7.9 75 6 0 

5/3/2015 5 0.0 20.1 8.2 10 0 0 

5/3/2015 6 0.5 20.8 6.5 2 1 0 

5/3/2015 7 3.0 20.8 3.8 4 0 0 

5/20/2015 1 1.5 23.5 5.5 3 0 0 

5/20/2015 2 1.0 23.5 8.2 3 0 0 

5/20/2015 3 0.5 23.7 8.1 3 1 0 

5/20/2015 4 0.5 24.1 3.3 2 0 0 

5/20/2015 5 1.0 24.2 7.0 6 0 0 

5/20/2015 6 0.5 24.4 7.3 12 0 0 

5/20/2015 7 0.5 24.4 8.2 12 2 0 

5/20/2015 8 0.0 24.5 9.4 30 1 0 

5/20/2015 9 0.5 24.5 8.9 1 0 0 

7/30/2015 1 2.0 29.5 4.6 60 6 1 

7/30/2015 2 2.0 

  

25 3 1 

8/21/2015 1 1.0 29.4 4.9 10 1 2 

8/21/2015 2 1.5 30.2 5.5 22 5 2 

8/21/2015 3 1.5 30.0 5.6 5 1 0 

8/23/2015 1 3.0 29.1 7.4 15 5 0 
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Appendix A, Table 2. Summary of group sightings of bottlenose dolphins during Little 

River surveys between August 2014 and August 2015. 

 

Date 
Sighting 

Number 
Sea State 

Water temp 

(°C) 

Depth 

(m) 

Dolphin 

Best 

Calf 

Best 

Neonate 

Best 

8/21/2014 1 0.5 
 

8.2 8 0 0 

8/21/2014 2 1.0 
 

9.0 9 1 0 

8/28/2014 1 3.0 26.0 
 

8 0 0 

8/29/2014 1 2.0 26.5 8.2 10 0 0 

9/2/2014 2 1.0 28.0 9.0 45 0 0 

9/2/2014 3 3.0 
 

7.5 14 1 0 

9/10/2014 1 1.0 27.0 7.6 2 0 0 

9/10/2014 2 0.5 28.0 8.1 45 0 0 

9/10/2014 3 1.0 
 

5.7 45 0 0 

10/25/2014 1 1.0 20.0 9.5 8 0 0 

10/25/2014 2 1.0 20.0 10.0 40 2 2 

10/25/2014 3 0.5 20.0 9.8 42 0 2 

10/25/2014 4 0.5 20.0 8.0 30 0 0 

10/25/2014 5 1.0 20.0 6.4 1 0 0 

10/25/2014 6 0.5 21.0 7.1 20 0 0 

10/25/2014 7 3.0 21.0 5.2 10 0 0 

10/25/2014 8 3.0 21.0 
 

8 0 0 

10/25/2014 9 2.0 21.0 
 

6 0 0 

10/25/2014 10 2.0 21.0 4.8 7 0 0 

10/27/2014 1 1.0 23.0 9.6 4 1 0 

10/27/2014 2 1.0 23.0 9.4 6 0 0 

10/27/2014 3 1.0 23.0 9.2 1 0 0 

10/27/2014 4 1.0 23.0 9.3 20 2 2 

10/27/2014 5 1.0 23.0 
 

6 0 2 

10/27/2014 6 1.0 23.0 9.1 15 1 0 

10/27/2014 7 0.5 23.0 8.7 22 1 1 

10/27/2014 8 0.5 23.0 8.1 35 1 4 

10/27/2014 9 0.5 23.0 8.6 17 0 0 

10/27/2014 10 0.5 22.0 8.6 23 6 2 

10/27/2014 11 0.5 22.0 7.0 5 0 0 

10/27/2014 12 0.5 22.0 5.9 1 0 0 

11/3/2014 1 0.5 19.0 8.5 7 0 0 

11/3/2014 2 0.5 19.0 9.0 1 0 0 

11/3/2014 3 0.5 19.0 9.8 3 0 0 

11/3/2014 4 0.5 19.0 9.8 20 6 0 

11/3/2014 5 0.5 19.0 9.8 15 3 0 
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Date 
Sighting 

Number 
Sea State 

Water temp 

(°C) 

Depth 

(m) 

Dolphin 

Best 

Calf 

Best 

Neonate 

Best 

11/3/2014 6 0.5 19.0 9.5 11 0 0 

11/3/2014 7 1.0 19.0 9.0 1 0 0 

11/3/2014 8 2.0 19.0 9.1 2 0 0 

11/3/2014 9 2.0 19.0 10.2 11 3 0 

11/3/2014 10 2.0 19.0 9.3 34 5 3 

11/4/2014 1 3.0 19.0 9.0 
   

11/4/2014 2 2.0 19.0 9.3 10 0 0 

11/4/2014 3 2.0 19.0 8.6 5 1 0 

11/4/2014 4 2.0 19.0 8.8 46 1 0 

1/22/2015 1 0.0 10.5 2.6 1 0 0 

1/22/2015 2 1.0 11.2 2.5 1 0 0 

1/22/2015 3 0.5 11.3 2.0 1 0 0 

1/22/2015 4 0.5 11.4 7.5 3 1 0 

1/22/2015 5 1.0 10.9 7.7 3 1 0 

1/22/2015 6 
   

1 
  

1/22/2015 7 0.0 
 

2.0 5 0 0 

3/9/2015 1 0.5 9.3 9.4 32 5 0 

3/9/2015 2 0.5 9.3 7.7 1 0 0 

3/9/2015 3 0.0 9.6 8.2 9 0 0 

3/9/2015 4 0.0 10.1 6.1 4 1 0 

3/9/2015 5 0.0 11.0 7.3 2 1 0 

3/9/2015 6 0.0 11.4 8.0 4 1 0 

3/9/2015 7 0.0 11.4 2.9 1 0 0 

3/9/2015 8 0.0 11.6 2.5 5 2 0 

3/16/2015 1 0.0 11.9 8.5 1 0 0 

3/16/2015 2 0.0 12.8 8.0 1 0 0 

3/16/2015 3 0.0 12.9 8.3 15 2 0 

3/16/2015 4 0.0 16.1 3.6 3 0 0 

5/2/2015 1 0.0 18.5 2.4 2 1 0 

5/2/2015 2 0.5 18.1 4.3 2 1 0 

5/2/2015 3 0.5 18.6 7.0 2 0 0 

5/2/2015 4 0.0 19.0 8.0 1 0 0 

5/2/2015 5 3.0 19.5 7.4 5 2 0 

5/4/2015 1 1.0 20.2 9.0 12 0 0 

5/4/2015 2 0.5 20.9 5.5 2 1 0 

5/4/2015 3 0.5 21.1 7.3 3 0 0 

5/4/2015 4 0.5 21.1 5.3 7 0 0 

5/4/2015 5 0.5 21.1 4.7 4 0 0 

5/4/2015 6 0.5 21.2 5.0 5 0 0 
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Date 
Sighting 

Number 
Sea State 

Water temp 

(°C) 

Depth 

(m) 

Dolphin 

Best 

Calf 

Best 

Neonate 

Best 

5/4/2015 7 0.5 21.3 8.0 15 1 0 

5/4/2015 8 0.5 21.3 7.0 1 0 0 

8/13/2015 2 1.0 29.1 6.3 19 2 0 

8/16/2015 1 1.0 28.8 8.9 12 2 0 

8/16/2015 2 0.5 29.1 5.0 15 2 0 

8/16/2015 3 1.0 29.1 7.0 20 2 0 

8/16/2015 4 1.0 29.1 6.6 2 1 0 
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Appendix B: Dorsal fin matches between catalogs. 

A total of 96 D1 dorsal fins and 66 D2 dorsal fins were compared between dorsal 

fin catalogs from adjacent areas such as southern North Carolina and Charleston.  Herein, 

a list detailing catalog identification (ID) numbers between the present study and the 

DUML/UNCWW catalog as well as the NOS Charleston catalog is provided (Table 1).  

In addition, the spatio-temporal variability of these matches is shown on table 2. 

 

 

Appendix B, Table 1. List of ID numbers matched between dorsal fin catalogs in the 

Carolinas via the Mid-Atlantic Bottlenose Dolphin Catalog. 

 Present study Catalog ID DUML/UNCW Catalog ID NOS-Charleston Catalog ID 

1 1023 21200  

2 1049  1044 

3 2055  2330 

4 3003 10240  

5 3006 10330  

6 3019  3050 

7 3026 10030  

8 3027 21190  

9 3030 82920  

10 3051  3102 

11 3064  3106 

12 6049  3130 

13 7426  7189 

14 8106 91100  

15 8137  7503 

16 8169  3088 

17 9018  3134 

18 9023  7496 

19 9046 60070  
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Appendix B, Table 2.  Dorsal fin matches (n = 162) between the current study and historical catalogs from the Carolinas. 

ID Stock Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

1023  

    

2015 2006 2006 2015 2014 

   1030  

    

2015 

  

2014 

  

2005 

 3003  

      

1998, 2013 2002 1998 

 

1999 

 3006  

     

2013 2003, 2013 1998 

 

1999 

  3026 SNCESS  2002, 2014 1999    1995, 2006 1996 1997 1996 2003 2002,2006 

3027 SNCESS  2014 2015   2011 2006     2014 

3030 SNCESS 

     

2011 
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Appendix C: Proposed changes to stock descriptions. 

Proposed boundaries for the SC/GA coastal stock, the NSCESS and the southern 

boundary for the SNCESS have not been investigated through photo-identification 

surveys.  The present study intended to verify some of those boundaries using a 

combination of photo-identification surveys and comparisons among well-established 

dorsal fin catalogs.  The definition for the northern boundary of the NSCESS was 

supported.  Members of the NSCESS were designated based on long term sighting 

history within the North Inlet/Winyah Bay Estuarine Reserve (CCU’s historical catalog).  

One NSCESS individual was sighted in coastal waters off Murrell’s Inlet, but never 

photographed in coastal waters north of Murrell’s Inlet.  An additional two NSCESS 

individuals were sighted in coastal water off the mouth of North Inlet. 

Surveys carried out off Little River were intended to clarify the southern 

boundary for the SNCESS.  Members of the SNCESS were designated based on:  1) 

long-term sighting history within estuaries and the ICW in southern North Carolina 

(MABDC) and 2) based on stock descriptions that defined dolphins sighted in inshore 

waters of southern NC as members of the SNCESS.  Several SNCESS dolphins were 

sighted within the Little River estuary, the ICW, as well as in nearshore coastal waters off 

Little River and as far south as Pawleys Island, SC during the winter months (December-

March).  There are no connection between the ICW and the Pawleys Island Inlet; hence 

dolphins are thought to have moved south following the coastal contour.  These data 

support a revision for the SNCESS southern boundary, perhaps as far south as Pawleys 

Island (Figure 1). 



Silva 

103 

This study also intended to clarify which stocks are present in the northern South 

Carolina coast.  Data from this study support that multiple stocks overlap in northern 

South Carolina and that an undefined coastal stock occurs from southern North Carolina 

to northern South Carolina, possibly as far south as Charleston in the summer (Figure 2). 

Previous coastal stock descriptions included a Southern North Carolina Coastal Stock 

ranging from Cape Lookout, NC to Murrell’s Inlet, SC and distinct South Carolina and 

Georgia coastal stocks (Waring et al. 2008).  Data from the present study support this 

previous description over the current descriptions of stocks occupying the northern South 

Carolina coast.  

The SM stock is believed to occur off northern South Carolina during late fall 

(mid-October-mid-November) given that an influx of dolphins was observed during that 

time and that individuals from this influx were not observed during the winter.  

Moreover, individuals from this influx were photographed during the previous fall survey 

and during spring surveys in the subsequent year.  Members of the SC/GA stock may be 

present in the study area; however catalog comparisons were not definitive in designating 

individuals to this particular stock.  Additional survey and matching effort is needed to 

better define the boundaries and distribution of coastal stocks. 
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Appendix C, Figure 1.  Proposed new southern boundary for the SNCESS. 
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Appendix C, Figure 2.  Proposed ‘new’ southern NC/northern SC coastal stock.  Purple lines depict the minimum range. 
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