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Applying the Poincaré Recurrence Theorem to
Billiards

Aaron Smith *
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Abstract

The Poincaré recurrence theorem is one of the first and most fun-
damental theorems of ergodic theory. When applied to a dynamical
system satisfying the theorem’s hypothesis, it roughly states that the
system will, within a finite amount of time, return to a state arbitrar-
ily close to its initial state. This result is intriguing and controversial,
providing a contradiction with the Second Law of Thermodynamics
known as the recurrence paradox. Here, we treat a set of pool balls
on a billiard table as a dynamical system that satisfies the hypotheses
of the Poincaré recurrence theorem. We prove that time is a volume-
preserving transformation from the state space onto itself. After show-
ing that the hypotheses for the recurrence theorem are met, we discuss
the theorem’s implications, including possible resolutions of the para-
dox that arises.

*Coastal Carolina University, Department of Mathematics and Statistics, P.O. Box
261954 Conway, SC 29528, ajsmith7@coastal.edu



1 Introduction

The Poincaré recurrence theorem is one of the most basic theorems of ergodic
theory and provides very important consequences for dynamical systems.
When applied to a dynamical system satisfying the theorem’s premises, it
roughly states that the system will, within a finite amount of time, return
to a state arbitrarily close to its initial state. For Hamiltonian systems, the
premises of the Poincaré recurrence theorem are often hastily satisfied by
citing Liouville’s theorem [2]. However, they may also be satisfied directly,
using only undergraduate-level mathematics. We will show that by applying
correct assumptions and restrictions, it is possible to directly satisfy the
premises of the Poincaré recurrence theorem with a set of pool balls on a
billiard table. This setting provides an interesting platform for discussion
of the theorem’s result, including possible resolutions of the paradox that
arises.

In order to formally state and prove the Poincaré recurrence theorem, we
must give mathematical meaning to the concept of recurrence.

Definition 1. Suppose a dynamical system has state space S, and the passage
of time is defined by a discrete transformation T: S — S. Let A € S be any
arbitrary subset of S. Then, a point x € A is said to recur to A with respect
to T if there exists a natural number n € N such that T"(x) € A.

Here, exponentiation of the transformation 7' represents composition of
T with itself. The natural number n represents the number of discrete time
intervals that must pass before recurrence of z is observed. Using this defini-
tion of recurrence, we can give a formal statement and proof of the theorem.

Poincare Recurrence Theorem. If S is a bounded space with measure p
andT: S — S is a measure-preserving transformation, then for any set with
positive measure B C S, the subset A C B of points that never recur to B
has measure zero [4].

Proof. Suppose S is a bounded space with measure p such that S has finite,
positive measure. Additionally suppose T: S — S is a measure-preserving
transformation on S and B C S is an arbitrary subset with positive measure.
Define A = {x € B|Vk € N, T*(x) ¢ B} as the subset of points in B that
never recur to B. We wish to prove u(A) = 0. To do this, consider the
preimages of A. We proceed by contradiction to show that these preimages



are mutually disjoint. Suppose x € T™(A) N T "(A) for some natural
numbers m and n, where m > n. But then the point 7" (z) recurs to A C B,
since T"(z) € A and T ™(T"(x)) = T™ " (x) = T™(x) € A. Since A is
the set of points that never recur to B, no such x exists. Thus, preimages of
A are mutually disjoint.

Next, note that |J T7"(A) C S, implies p | U T"(A)) < u(S). Fur-
n=1 n=1

thermore, the measure of a union of disjoint sets is equal to the sum of the
measures of the sets and T preserves measure; thus

i (U T"<A>> =S W@ () = 3 plA) < u(s)

Finally, note that this is an infinite series with constant terms whose sum is
bounded by u(S) < co. This is only possible if u(A) = 0.
O

The billiard system that we construct serves as the example through
which this theorem’s result is discussed. To satisfy the theorem’s premises,
we must assume that the pool table is bounded and frictionless, energy is
conserved, and all energy is kinetic. Additionally, we simplify the calculations
by assuming all ball collisions occur instantaneously.

2 Constructing a Bounded State Space

To apply the recurrence theorem, we must first have a bounded, measurable
space. Recall that we wish to use the theorem to show that the billiard
system will eventually return to a state close to its initial state. This implies
that the system’s state space will serve as the bounded, measurable space S.

Definition 2. The state space of a system s the set of all allowable states
of that system.

Suppose a dynamical system consists of n billiard balls of equal mass
m existing on a bounded billiard table. To construct the state space for
this system, we first apply a two-dimensional spacial Euclidean coordinate
system to the table. Since the table is bounded, choose one corner as the
origin and assume the spacial coordinates vary from (0,0) to (a,b), as shown
in Figure 1. The position of each ball in the system can be represented by



Figure 1: Bounded billiard table in a possible initial state

two coordinates; therefore, denote x; and y; as the position coordinates of the
ith ball. However, at a given instant in time, the positions of the balls in the
system are not sufficient to describe the entire state of the system including
all future and past behavior; we need velocities as well. Thus, let v,; and vy,
denote the velocity coordinates of the i** ball.

The collective knowledge of the positions and velocities of every ball at
a particular instant in time constitutes sufficient information to describe the
entire state of the system at that instant. Because the system is deterministic,
this includes knowledge of the unique future and past behavior of the system.
Thus, we require 4 real numbers to fully describe each ball, or 4n real numbers
to describe the entire system. This indicates that the state space of the
system is given by S C R*".

The position coordinates of each ball in the state space are bounded below
by 0 and above by a > 0 (for x-coordinates) or b > 0 (for y-coordinates),
due to the geometric construction of the billiard table; a ball with position
coordinates outside of these bounds would be outside of the physical table
boundaries, which is disallowed. However, for the entire state space to be
bounded, we must also show that the velocity coordinates are bounded.

Although the velocity coordinates are not intrinsically bounded, they
attain bounds when the system is given an initial state as a byproduct of
conservation of energy in the system. To show this, suppose the system
is given an initial state and allowed to propagate in time. In this respect,
let X € S be the initial state of the system. As time passes, the positions
and velocities of the balls become functions of time. Next, note that the



balls travel linearly during intervals without collisions; mathematically, the
derivatives of the balls’ position functions with respect to time are the balls’
velocity functions, and the derivatives of the balls’ velocity functions with
respect to time are zero. This describes the following first order piecewise
continuous system of ordinary differential equations:

( dxét(t) — ,le(t) fori = 17 2’ 3, Lo, n
dy; ,
_ydt(t) = ’in(t) fOI"Z - 17 27 37 sy (1)
d’l)zd»;(t) = O fOI‘?/ - 1;2737"'7n

|~ 0 fori=1,23.. .0

These equations are piecewise continuous since they only apply during
intervals without collisions, and collisions are assumed to be instantaneous.
If the solution to this system of equations is given by

F(t) = (xl(t>7 yl(t>7 $2<t)7 yQ(t)a cee 7xn(t)7 yn(ﬂ:
U1 (t), Uyl (1), vaa(t), vya(t), - - - s Van(t), Uyn(t»

then the initial system state X € S becomes the initial condition r(0) = X to
an initial-value problem. Thus, by the existence and uniqueness theorem for
first-order ordinary differential equations, the solution r(t) is guaranteed to
exist and be unique [1].

Next, consider the total energy of the system. All energy is kinetic by as-
sumption, which implies that the total energy of the system at any time ¢ may
be expressed by the sum of the kinetic energies of the balls. Mathematically,

(2)

B =3 S =7 > 20+ 2,0] =23 P2 + o)

i=1

(3)
where v; represents the speed of the i*® ball. Since we insist that energy is
conserved, the total energy in the system is constant at all points on the
curve r(t). Thus, if the total system energy at the initial state is denoted by
E, then we may rearrange equation (3) to obtain

n

S o8 + vs(t)?] = = (4)

- m
=1

which holds for every point on r(t).



Equation (4) describes a level surface in R*" [5]. Since the system always
satisfies this equation, every point in the state space must lie on this level
surface; in other words, S is a subset of this level surface. This implies

that every velocity coordinate of S is bounded above by w/% and below by

. /2E
.

At this point, it is clear that the state space S is bounded. Indeed, the
position coordinates of S are intrinsically bounded by the construction of the
table; additionally, applying an initial state to the system imposes a bound
on the velocity coordinates. However, in order to apply the theorem, S must
also be measurable. Since S is a subset of R*", classical Euclidean volume
in R*" serves as the measure p on S. Note that S clearly has positive, finite
volume.

3 Time as a Volume-Preserving Transforma-
tion

In addition to a bounded, measurable space, the Poincaré recurrence theorem
requires a measure-preserving transformation 7" from the space onto itself.
So far, time has served as the independent variable for a system of ordinary
differential equations. We now turn to characterizing time in a more general
form as a collection of volume-preserving transformations that satisfy the
hypotheses of the theorem.

Thus, define the passage of time by a family of transformations from the
state space onto itself. Formally, for all real numbers ¢, define T;: S — S such
that if § € S is any system state, then T}(S) € S represents the system state
t seconds later. Note that the Poincaré recurrence theorem only requires a
single measure-preserving transformation 7; we show that this criterion is
met by every T} in this family of functions. Thus, to apply the theorem, we
simply choose a discrete time step o > 0, and use T, as the transformation
T.

Now, T; is a volume-preserving transformation if and only if for any mea-
surable region R C S, the volume of R is the same as the volume of the image
of R, namely the region T;(R). However, for any continuous transformation,



we may express the volume of a region as it is transformed by

[aa= [ 1amaa (5)
R Ti(R)

where J[T}| represents the Jacobian of T} [5]. In equation (5), |J[T]| rep-
resents the factor by which the region must be multiplied in order for the
equality to hold. If |J[T;]| = 1, then the equation reduces to

/dA: /dA (6)

R Ti(R)

which expresses that the volume of R is equal to the volume of T;(R). This
implies that T} is volume-preserving if and only if J[T;] = 1. Thus, we must
calculate the Jacobian of T;. We consider two cases: time intervals where no
collisions occur and the instant when a collision occurs. In both cases, T} is
linear; this implies that the Jacobian of T; is simply the determinant of the
matrix representation of 7; in each case.

3.1 Preserving Volume During Intervals Without Col-
lisions

We first consider time intervals where there are no ball collisions. Given an

initial point and assuming that no ball collisions occur during an interval of

time ¢, elementary physics dictates that the velocities of the balls will remain
constant while the positions will increase by vt. Thus, T; has the form



—.1’1_ _1'1 +tvx1—
n Y1+t
i) T2 + t’UzQ
Y2 Y2 + tvy?
T Ty + tULy,

+ tv
Uz1 Uz1
Uy1 Uy1
Vg2 Vg2
Uy2 Uy2
/an vxn
LUyn L Vyn _

Clearly, the matrix representation of 7T} that elicits this behavior is given
by

1 1000 --00¢t000 - 00] [z
n 0100--000¢t00--00|]|wn
5 0010 --0000¢0-- 00/
Ys 0001 --00000¢t - 00w
Tn 0000 --100000 - ¢ 0| |
| [ | [_]0000 010000 0¢t| |y ®)
1 va 0000 --001000 - 00| |va
vy 0000 --000100-- 00| |vy
Vg 0000 --000010 - 00 |vae
V2 0000 --00000T1--- 00| |vy
Van 0000 --000000 - 10| |vgn
| Vyn ] 0000 ---000000 - 0 1] [vyn

Since this matrix is upper-triangular, its determinant is the product of



its diagonal entries.
i=1 i=1

Thus, the determinant of T} is equal to 1 for intervals where no ball collisions
occur, which implies that the transformation preserves volume during such
intervals.

3.2 Preserving Volume At the Instant of a Collision

It is slightly more complicated to show that T; preserves volume during in-
tervals when a collision occurs. However, the proof may be simplified by
noticing that an interval of time during which a collision occurs may be de-
composed into the subinterval before the collision, the instantaneous collision
itself, and the subinterval after the collision. We have already shown that
volume is preserved during the subintervals, since no collisions occur during
them. Therefore, we must only show that volume is preserved during the in-
stant the collision occurs. Since we assume collisions occur instantaneously,
it is reasonable to assume that no more than two balls collide at any given
instant; indeed, the probability that two such collisions will occur simulta-
neously is zero. Thus, Ty must map the instant before a collision to the
instant immediately afterwards. Finally, it is important to note that since
these two points occur concurrently, we expect the transformation to affect
the velocities of the two balls but not the positions.

In order to simplify the calculation of the balls’ final velocities, we first
employ a rotation transformation matrix to rotate the initial velocity vec-
tors into a u — v coordinate system where the collision is reduced to a one-
dimensional problem (see Figure 2). The angle of rotation is chosen so that
the force of the balls colliding, which affects the final velocities of the balls,
is entirely in the u-direction of the new coordinate system. Thus, elementary
physics dictates that the two balls simply switch their u-component veloc-
ities, while retaining the same v-component velocities as before [3]. After
applying this velocity switch, we rotate the vectors back to the original z —y
coordinate system. For n = 2, we use the rotational matrix Ry to rotate the
velocities into the desired coordinate system, the row-switching matrix W
to swap the u-components of the velocities, and finally R_g to rotate the
velocities back into their original coordinate system.
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Figure 2: Coordinate transformation to simplify calculations during a colli-
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Assuming a collision occurs between balls 1 and 2 at the point specified,
the final transformation is given by

g X1
Y1 U1
X9 T2
T, | | % —R oxWxRygx | (11)
(51 (5]
Uyl Uyl
V2 V2
| Vy2 | | Uy2

By the chain rule, the Jacobian of Ty is simply the product of the deter-
minants of these matrices. However, since rotations have determinant 1 and
row switches have determinant —1, the Jacobian of Tj is

J[Ty] = det(Ty) = det(R_g) x det(W) x det(Rg) = (1)(—1)(1) = —1 (12)

Finally, note that we have so far focused only on the two colliding balls and
ignored the presence of the other balls in the system. However, since Ty is an
instantaneous transformation, we expect the coordinates of the other balls in
the system to remain fixed. This indicates that the full matrix representation
of Ty during a collision mirrors the identity matrix for the omitted entries,
with ones on the diagonals and zeros elsewhere. This implies that the omitted
entries will not affect the overall determinant of the matrix, which will still
be —1. Thus, 7T; is a volume-preserving transformation during intervals with
collisions as well.

4 Discussion

Now that we have proved the billiards system satisfies the hypotheses of
the Poincaré recurrence theorem, we have a setting by which to discuss the
theorem’s result.

Suppose one views this billiard table and observes an initial configuration
like the state pictured in Figure 1. Consider the set B € S to be an e-ball
centered around the initial configuration observed. If ¢ > 0 is small enough,
then every point in B represents a state that is imperceptibly close to the
initial state - so close that one could not distinguish between them with the
naked eye. However, since B is a ball, it clearly has positive volume. Next,
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he or she fixes a discrete time interval, say one hour, and periodically checks
the table once per interval. The Poincaré recurrence theorem states that the
set of points in B that will never return to B no matter how many time
intervals are observed has measure zero. This means that with probability
one, the system’s initial configuration is not in this subset, and eventually
will return to B. Therefore, after a finite number of intervals, one will check
the table to find that it has returned to a state in B; that is, it has returned
to a state imperceptibly close to the initial state. If the initial state is that
the balls are “racked” together and the cue ball is about to “break” them,
then the balls will, within a finite amount of time, spontaneously appear to
re-rack and re-break themselves. This is called “almost periodic” behavior.

The Poincaré recurrence theorem is controversial when considered within
the context of the Second Law of Thermodynamics.

Second Law of Thermodynamics. The entropy of an isolated system (or
group of systems) never decreases. The entropy either increases, until the

system reaches equilibrium, or, if the system began in equilibrium, stays the
same [3].

According to the Second Law of Thermodynamics, the measure of disor-
der of a system will never decrease - it will either increase or stay the same.
However, this directly contradicts the result of the recurrence theorem, which
claims that an isolated system like the billiard table in a high state of disor-
der, such as the state directly after the break, might once again reorder itself
as it spontaneously re-racks into a state of decreased entropy. This is known
as the recurrence paradox and is most commonly reconciled by a claim that
the amount of time that one must wait before the billiard system returns to
its initial state is orders of magnitude larger than the expected life of the
universe.

It is notable to mention that if the set B has a smaller measure, one can
generally expect to wait more time steps for the system to return than if
B has a larger measure. This intuitive result comes from the observation
that the largest possible measure of B would occur if B = S, in which case
recurrence would be guaranteed after a single time step.

Similarly, the length of the time quantum « can also be correlated with
the amount of time one can generally expect to wait before the system recurs.
For instance, if one compares the total amount of time required to observe
recurrence using a yearly time quantum with the amount of time required

12



using a time step of one second, it would generally take longer to observe
recurrence with the yearly quantum.

Finally, although the recurrence theorem guarantees recurrence with prob-
ability one, it does not guarantee that the system recurs for every single point
in B. In fact, there may be infinitely many points that do not return to B.
However, the theorem does assert that the set of points in B that do not
return to B has measure zero — even though B has positive measure. Thus,
although it is possible that the billiard table’s initial configuration is one that
never recurs, it is a zero probability event; consequently, the probability of
recurrence is one.

5 Conclusion

After introducing the Poincaré recurrence theorem and briefly discussing its
purpose, we demonstrated that a set of billiard balls on a table can be mod-
eled as a dynamical system. Next, we employed this system as an example
to exhibit the theorem’s results. During this process, we applied a number
of simplifying assumptions including the presumption that collisions are in-
stantaneous. We hypothesize that this restriction may be relaxed without
affecting the result. In addition, the Poincaré recurrence theorem may be
applied to a myriad of similar systems in addition to billiards. For instance,
the theorem may be applied to the random motion of gas molecules in a
chamber, to prove that the particles will spontaneously collect on one half of
the chamber. However, although this system is also Hamiltonian, it is more
complicated than billiards because it involves 3-dimensional motion, while
billiard balls are restricted to 2-dimensional motion. The Poincaré recur-
rence theorem is known for its surprising result; it is an interesting theorem
that provides a glimpse into ergodic theory.
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