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ABSTRACT 

Human Alzheimer's disease (AD) is the most prevalent and lethal neurodegenerative disease; it 

involves the accumulation of neurofibrillary tangles, loss of synapses and neurons in specific 

areas of the brain, and the presence of extracellular amyloid plaques, particularly Amyloid beta-

42 (AP-42). In this study, two Drosophila transgenic fly lines carrying either elav-GAL4 driver 

or UAS-AP-42 transgene, were crossed to generate AD flies that expressed low levels of human 

Ap-42. Male AD flies (experimental) and elav-GAL4 flies (as parental control without AP-42) 

were tested for learning and short-term memory using the courtship suppression assay (Siegal 

and Hall, 1979). The courtship suppression assay includes "training" and "testing" periods, 

where male flies rejected by a previously mated female during training will retain the memory 

and therefore exhibit less courtship behaviors in testing period. First, a single virgin male was 

assigned to one of three training conditions: paired with a previously mated (trainer) female 

(experimental condition), a virgin female, or no female (sham control). After one hour of 

training, all males were transferred and paired with virgin females for ten minutes. Independent 

raters reviewed the training and testing videos and calculated courtship indices (CI) reflecting the 

amount of time males engaged in characteristic courtship behaviors (ex. orientation, wing 

vibration, tapping). Both 4-6 days-old elav-GAL4 and AD males exhibited less courtship 

behaviors towards mated females, suggesting the efficacy of training. In addition, trained elav-

GAL4 males had a lower average CI than the sham control in testing, indicating their short term 

memory is intact. However, the average testing CI for 4-6 days-old trained AD males was similar 

compared to their sham control group. Our results showed that four-to-five days-old AD males 

already exhibited deficits in short-term memory. 



.· Robles 3 

INTRODUCTION 

Neurodegeneration can cause a wide variety of neurological disorders, such as 

Parkinson's disease (PD) and Alzheimer's disease (AD). These are dementing cognitive 

disorders that are characterized by a loss of structure or function of neurons, leading to severe 

mental and physical effects (Mershin et al., 2004). Neurons are highly specialized cell types 

responsible for processing and transmitting cellular signals. A loss of structure or function of 

neurons can thus be devastating. Neurons are also classified as post-mitotic, meaning they do not 

undergo cell division after fetal development is complete. Therefore, lost neurons and their 

associated function are typically not replaced. Consequently, neurodegeneration can lead to loss 

of synapses and neurons in specific areas of the brain affecting everyday processes such as 

memory, movement, speech, or balance-gradually, as the neurons deteriorate, vital bodily 

functions are lost, resulting in death. 

Alzheimer's disease is the most common and lethal neurodegenerative disease accounting 

for the majority of cases of dementia in the elderly, with an estimated 5.3 million Americans 

with the disease. It is the sixth-leading cause of death in the US, with approximately one in every 

three seniors dying with AD or another dementia (Alzheimer's Association). This chronic 

neurodegenerative disease starts off slowly, characterized by impairments in memory and 

cognitive abilities, and gets worse over time. There are two classes of the disease: early-onset 

(EOAD) and late-onset (LOAD). EOAD manifests before 60 years of age and LOAD occurs 

most often in those over 65 years of age (Mhatre et al., 2014). EOAD has been found to have a 

genetic origin and thus inherited, giving it the name familial AD, but only makes up about 5% of 

all cases. About 95% of people with AD were reported to have LOAD, but similar 

neuropathology is seen with both classes of AD (Mhatre et al., 2014). Age is the greatest risk 
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factor for AD, similar to other common, chronic, lethal conditions like cancer and cardiovascular 

disease (Rogers et al., 2012). The disease itself is not a normal part of aging, as brains of elderly, 

nondementedpeople show substantial hallmark indications of AD (Goguel et al., 2011). The 

number of Americans with AD will increase as the size of the population over 65 years of age 

continues to rise as a result of longer life spans and the aging Baby Boomer generation. At the 

current rate, AD prevalence is projected to increase to 13.8 million people in the USA by 2050, 

excluding any medical breakthroughs to prevent or slow the disease (Alzheimer's Association). 

Therefore, it is crucial for further research and understanding of how the disease progresses and 

the underlying mechanisms contributing to the pathogenesis of AD so effective treatments can be 

developed to slow or stop the neuronal malfunction and resulting death. 

The pathological hallmarks of the disease are the accumulation of neurofibrillary tangles, 

loss of synapses and neurons in specific areas of the brain, decreased axonal transport, and the 

presence of extracellular amyloid plaques (Goguel et al., 2011; Rogers et al., 2012). These 

plaques are mainly composed of amyloid beta (A~) peptides and intraneuronal neurofibrillary 

tangles (NFTs) comprised mostly of aggregated TAU, an insoluble fibrillar microtubule binding 

protein (Mershin et al., 2004; Rogers et al., 2012). There are two A~ peptides that make up 

amyloid plaques: Amyloid beta with 40 and 42 amino acids in length. The A~ peptides result 

from the cleavage of amyloid precursor protein (APP) by presenilins PS 1 and PS2 (Rogers et al., 

2012). There is still no conclusive correlation between the presence of amyloid plaques and 

neuronal loss as the cause of AD, due to a lack of definitive pathogenic pathway linking them 

together (Ling et al., 2009). Although no definitive pathway, in AD, both proteins (A~ and TAU) 

are found to be misfolded and aggregated. Aging could play an important role in increasing 

vulnerability to protein toxicity, as the duration and extent of exposure can induce neuronal 
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dysfunction and reduce protein turnover leading to an accumulation (Sofola eta!., 2014; Rogers 

eta!., 2012). A study conducted by Ling eta!. has found that autophagic vesicles become 

accumulated and increasingly dysfunctional with age and A~42 expression (2009). Normally, 

autophagy, a lysosome-mediated process, is responsible for the turnover of long-lived proteins 

and organelles. Expression of A~42 induced an age-dependent injury to this autophagic-

lysosomal degradation pathway which led to extensive damage and death of neurons (Ling eta!., 

2009). The mechanisms by which A~ or TAU proteins contributes to the clinical progression of 

AD is not entirely clear, but there has been strong support for the amyloid cascade hypothesis. 

This is due to mutations found in EOAD, affecting the amyloid precursor protein (APP) from 

which both A~ peptides are derived from. This causes an accumulation of A~ peptides, 

specifically a greater increase in A~42 peptide. This peptide has a greater tendency to aggregate 

and be more neurotoxic than A~40, thus, it is associated more with the development of AD (Ling 

eta!., 2009). The precursor of A~ peptides plays a crucial role in the early stages of the disease 

and thus serves as an important molecule in the pathogenic cascade leading to AD (Rogers eta!., 

2012). 

Many diseases are researched in vivo due to a better understanding of the overall effects a 

disease has on a living organism. The development of an in vivo disease model for AD has 

increased over the last 3 0 years, thanks to a better understanding of the disease. An important 

and influential model organism for understanding the mechanisms of many neurodegenerative 

diseases, such as AD, is the invertebrate model organism Drosophila melanogaster (fruit fly). D. 

melanogaster is a prime candidate because it is inexpensive, has its complete genome sequenced, 

has a short life span, short generation time, and has a large number of genetic tools that enable 

gene expression to be restricted to specific areas of the brain (Xu eta!., 2014). Most importantly, 
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the genome of D. melanogaster contains homologs of approximately 70% of human disease-

related genes (Goguel eta!., 2011). One of them includes homology among APP, such as 

mammalian APL Pl/2 and Drosophila Beta-Amyloid Precursor Protein-Like (APPL). Homology 

among these two members of the APP family allows them to functionally substitute for each 

other (Torroja et al., 1999). A~ sequences are not conserved in the Drosophila APPL, but 

expression of human A~ results in similar features observed in the mouse model, such as 

behavioral deficits and neurodegeneration (Goguel eta!., 2011; Iijima eta!., 2004). This finding 

further proves that D. melanogaster serves as a reliable model for the pathogenesis of AD. 

In order to study the effects human A~, or other disease-related proteins, there has to be a 

way to introduce the genes into D. melanogaster. Developing a system to target gene expression 

has always been an area of increased study because it is a useful tool for analyzing genes of 

interest. A landmark study by A.H. Brand and N. Perrimon was able to accomplish this. Brand 

and Perrimon developed a system, called the GAL4/UAS system, which allows for genes to be 

turned on in any cell type at any time in development, even incorporate and drive genes from 

other species (1993). This allows for the analysis of genes and the proteins that they may code 

for. The system works by two parts: the GAL4 gene (the activator/driver) and the Upstream 

Activation Sequence (UAS). The GAL4 is a transcriptional activator derived from yeast, and can 

activate transcription in flies but only from promoters that have GAL4 binding sites. In order for 

the GAL4-dependent target gene to be activated, it has to be subcloned behind a tandem array of 

five optimized GAL4 binding sites, the UAS. Both work together to have an effect on cells. With 

just the GAL4 gene, there is no effect on Drosophila cells, but with UAS, there is an effect and 

the gene (responder) next to the UAS is transcribed. This system can be used to generate 

dominant phenotypes for use in genetic screening, such as expressing A~42 to model 
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neurodegenerative diseases like AD (Brand and Perrimon, 1993). By using Drosophila and 

utilizing the GAL4/UAS system, there have been hundreds of fruit fly GAL4 lines developed 

over the years. 

Using the GAL4-UAS system, researchers have been able to study the molecular basis of 

AD pathogenesis and other diseases. With AD, researchers can examine the effects of A~ in the 

Drosophila brain to analyze the possible roles it has in causing learning defects, memory decline, 

and neurodegeneration (Iijima eta!., 2004). Significant research has been focused on the 

Drosophila mushroom bodies (MBs ), which are paired neuropil structures in the central brain 

(Akalal eta!., 2006). It has been suggested that the MBs serve different functional roles and are 

important for associative learning and memory, since genes associated with them have elevated 

levels of expression in the MB neurons (Akalal et a!., 2006). It has also been found that MBs are 

centers for courtship behavior, as well as a role in circadian clock, and generation, regulation, 

and coordination of motor patterns (Martinet a!., 1998). Therefore, D. melanogaster serves as a 

powerful model for studying mechanisms related to learning, memory, and motor patterns, all of 

which have an important implication in AD. One of the most widely used methods to study 

learning and memory is olfactory conditioning. This type of associative conditioning tests the 

fly's ability to avoid an odor (conditioned stimulus CS+) associated with an electric shock 

punishment (unconditioned stimulus US) in opposition to a second odor (the CS-) without a 

shock, to test aversive memory (Becket a!., 2000; Kim eta!., 2013). 

Another method to study learning and memory without the use of electric shocks is the 

conditioned courtship behavior assay. This behavior assay tests the fly's ability to alter its 

courtship behavior after learning from prior sexual experiences (Siegel and Hall, 1979). Most 

studies in the past on behavioral plasticity have focused on male courtship choices between 
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virgin and non-virgin females. The role of aging and neurodegeneration can also be implemented 

in this type of assay to examine the males' choice behavior based on previous learning and the 

resulting memory (Hu eta!., 20 14). The courtship behaviors elicited by male Drosophila flies are 

done in a pattern. Examples of courtship behaviors include orientation of the male fly towards 

the female, tapping the female with his foreleg, extension and vibration of his wing to produce a 

"courtship song," extending his proboscis to lick the female, and copulation attempts (Moehring 

and Mackay, 2004; Siegel and Hall, 1979). These activities are performed by the male naturally, 

which means that their actions are independent of conditioning. Researchers, such as Siegel and 

Hall (1979), Mhatre eta!. (2014), and McBride eta!. (1999) use experience-dependent courtship 

conditioning to modify the male courtship behavior by allowing naive males to experience an 

unreceptive female for a period of time. Exposure to an unreceptive female will eventually 

reduce male courtship behavior, even towards virgin females. McBride et a!. point out that males 

experiencing virgin females did not show a depressed courtship activity towards other virgin 

females. This means that the conditioned courtship suppression with unreceptive females and 

subsequent virgin females was a result of experience with an unreceptive female and resulting 

change in behavior (1999). This type of courtship conditioning can be used to assess the roles 

age and neurodegeneration have on learning and memory. Maintenance of normal mating ability 

is crucial to the organism's reproductive fitness (Goguel eta!., 2011). Therefore, disruptions in 

this behavior can be used to study cognitive impairments and memory decline. 

The studies reviewed here highlight the importance of the animal model Drosophila 

melanogaster, and the work behind developing an effective disease model for AD and other 

neurodegenerative disease. The ability to model AD in vivo allows researchers to study the 

effects the disease has as well as the mechanisms of the disease. The Drosophila model has 
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allowed researchers to further investigate age-related behavioral defects. This can help to provide 

essential information on how the nervous system changes with age, affecting other key systems 

such as motor control or memory recall/retention/formation, similar to the pathology seen in AD 

patients. Drosophila model also has a set of genetic tools that can be used to manipulate its 

genome for use in investigating mechanisms related to behavior and age. This has been taken 

advantage of by the landmark study from Brand and Perrimon (1993) on the development of a 

system to target gene expression, the GAL4-UAS system. Consequently, many researchers have 

taken advantage of this model to enhance our understanding of aging and its influence on age-

related behavioral declines (ex. activity and coordination, learning, and memory) by coming up 

with different, influential, and reproducible behavioral and learning assays. 

Siegel and Hall's 1979 experiment on courtship conditioning has been used by many 

researchers throughout the years to study learning and memory. Researchers can use this 

behavioral assay to help answer the question as to how neurodegeneration and age affect 

memory. In respect to flies, is courtship behavior completely eliminated by neurodegeneration? 

Does age play a major factor in memory decline, and if it does, is it exacerbated with both age 

and neurodegeneration? Is Drosophila a good model for examining these questions? This study 

will hopefully aid in answering some of these questions by using the fruit fly as a model of AD. 

It will be conducted in multiple parts, including rearing the flies to express A~42, conducting the 

courtship suppression assay, and observing any changes in the characteristic patterns of courtship 

behavior in relation to age. This will help in enhancing our research question which is whether 

there is a relationship between neurodegeneration, age, and memory loss. A decline in memory 

associated with the proposed AD-causing protein can help to correlate it with neurodegeneration, 

similar to the one seen in the progression to AD in humans. 
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METHODOLOGY 

Courtship behavior has been widely used to investigate activity and coordination, as well 

as learning and memory. It remains to be useful for the investigation of age-dependent decreases 

in cognitive ability due to Ap. Drosophila melanogaster courtship behavior, as stated earlier, 

involves the exchange of various sensory stimuli in the courtship pattern between males and 

females. These characteristic motor behaviors are crucial because behavior relies on coordination 

of the nervous system and musculature. Any defects in these behaviors can help to investigate 

how age and neurodegenerative diseases affect these two key organ systems. As stated 

previously, the fruit fly will be used as a model to observe the effects the proposed AD-causing 

protein, Ap, and age has on experience-dependent courtship behaviors. A courtship-suppression 

assay on Drosophila flies will be conducted in the lab. Protocols from Siegel and Hall (1979) 

will be use·d as a starting point for the assay, with some slight modifications. Special concerns 

include developing an effective schedule to keep the experiment going and keeping the stock 

alive. We should also take into consideration developing a way to record the activity for review 

at a later date. Also, making sure that the evaluator is blind to the flies being tested, so that there 

is no bias in describing changes in courtship behavior. The data obtained will be evaluated 

according to past protocols on how to analyze courtship assays. This study and others alike are 

vital for investigating mechanisms that influence neurodegeneration-related behavioral and 

memory declines. Unlike other experiments on mammals, which often involve postmortem 

studies, studies on Drosophila can occur in real time. The nervous system is less complex 

because it is smaller and more understood. This knowledge can be applied to real world 

neurodegenerative disease, such as AD, to help in developing potential therapeutics. 
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Drosophila Stocks and Genetic Crosses 

Wild-type flies used were elav-Gal4 purchased from Bloomington Drosophila Stock 

Center at Indiana University (stock number 458). All flies were maintained at 23°C in a 12:12 

light: dark cycle. Flies were grown with JAZZ-Mix Drosophila food, consisting of a mixture of 

sugar, com meal, yeast, and agar recipe (Fisher Scientific, Pittsburgh, PA). Experimental strain 

used was transgenic fly line carrying human A~42 under yeast UAS promoter control (Novartis 

International), a generous gift from Jeibmann's lab. 

All crosses were carried out at 23°C 12:12light:dark cycle on a JAZZ-Mix diet (Fisher 

Scientific, Pittsburgh, PA). 458 (elav-GAL4) flies carry the GAL4 driver on the X chromosome 

while the UAS-A~42 express the A~42 fragment of APP under the control ofUAS on 

chromosome 2. To cross, elav-GAL4 virgin females were crossed with UAS-A~42 virgin males. 

After approximately two weeks, experimental male flies were collected from the first generation 

and transferred to smaller food vials, with only five males per vial. 

Behavioral Testing 

For courtshlp behavioral training, methodology was adapted from McBride eta!. (1999) 

with slight modifications. Virgin males were collected between 0 to 6h after eclosion (Day 1) 

and transferred to food vials (5 males per vial). All flies were maintained at 23°C in a 12:12 

light:dark cycle. All behavioral tests were conducted in a separate room maintained at 23°C and 

under a constant dim lighting. All behavior was digitally recorded using a Sony Handycam with 

Carl Zeiss optics. The total time a male performed courtship behaviors (ex. orientation, 

following, wing extension and vibration, attempted copulation, tapping) were measured using a 
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stopwatch and scored. The courtship index (CI) was calculated as the total time males 

performing courtship behavior divided by the total time observed. 

Robles 12 

Virgin female elav-Gal4 flies were collected and kept in normal food vials in groups of 

I 0. Trainer (mated) females used for training were obtained by mating elav-GAL4 virgin females 

with virgin elav-GAL4 males on Day 4, and keeping the mated females in individual food vials. 

On Day 5, individual virgin males were transferred by gently aspirating to an empty well in a 4-

well plate (Thermo Scientific, catalog# 144444) and allowed to acclimate for I minute. A 

microscope slide was used to cover the open wells. Then, a previously mated elav-GAL4 female 

trainer was added to the well by sliding the microscope slide and the males were trained for 60 

minutes. The amount of time the males exhibited courtship behavior (ex. orientation, following, 

wing extension and vibration, attempted copulation, tapping) was assessed during the first I 0 

minutes and the last I 0 minutes of the training phase. A CI was calculated for both time the first 

I 0 minutes and the last I 0 minutes. After 60 minutes, male flies were transferred within 2 

minutes without anesthesia to a new, clean well that already contained a virgin elav-GAL4 

female. Courtship behaviors were recorded for I 0 minutes. A group of sham controls (virgin 

males) of the same genotype were transferred to a separate well without any female for 60 

minutes, then virgin elav-GAL4 females were added to the wells for I 0 minutes during testing. 

All observers were blind as to the fly's experimental status during courtship behavior analysis. 

Statistical Analysis 

To determine the significance between different measures, a two-tailed Student's t-test 

was performed. Significance was determined at the 95% confidence level. 
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RESULTS 

During the 60 minutes of training, 4-6 days-old elav-GAL4 and AD flies showed a 

significant drop in courtship behavior in the last 1 0 minutes of training when compared with the 

first 10 minutes (Figure 1 ). Although not significantly different, this trend was also observed in 

16-17 days-old elav-GAL4 males. This was not the case with 16-17 days-old AD males. These 

data suggest that both elav-GAL4 and AD flies were able to modify behavior at 4-6 days-old in 

response to successful interpretation of sensory stimuli. 
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Figure 1: Average courtship index between the first 10 min and last 10 min during 
training phase. 4-6 days-old elav-GAL4 males show a significant difference between the 
first 10 and last 10 minutes of training, suggesting the efficacy of training. A significant 
difference was also observed for 4-6 days-old AD males. No significant differences were 
observed between any groups at 16-17 days-old, or when comparing the first 10 minutes at 
different ages of the same genotype, or when comparing the first 10 minutes between 
different genotypes, within the same age. Horizontal bars indicate significant differences 
observed. A double asterisk indicates p<0.001 when comparing to 1st 10 minutes. Error bars 
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represent 95% confidence interval. N=60, N=l7 for 4-6 days old elav-GAL4 and AD, 
respectively. N=S, N=13 for 16-17 days old elav-GAL4 and AD, respectively. 

During the I 0 minutes of testing, trained 4-6 days-old elav-GAL4 males showed a 

significantly lowered courtship index when compared to age-matched sham males (Figure 2). 

However, such a decrease in courtship behavior was not observed in flies expressing A~42 in the 

same age group. AD flies 4-6 days-old showed no significant difference between age-matched 

untrained males (Figure 2). Trained 16-17 days-old elav-GAL4 or AD showed no significant 

difference in courtship index compared to their respective age-matched sham males (Figure 2). 
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Figure 2: Average courtship index between trained and sham males during testing 
phase. 4-6 days-old elav-GAL4 males show a significant difference between trained and 
sham males, indicative of immediate recall of memory. No significant difference was 
observed between 4-6 days-old AD trained and sham males. When comparing between 
different ages of same genotype, a significant difference was seen between 4-6 days-old 
elav-GAL4 and 16-17 days-old elav-GAL4 trained males. When comparing between 
different genotypes, within the same age group, a significant difference was observed 
between 16-17 days-old elav-GAL4 and AD trained males. Horizontal bars indicate 
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significant differences observed. A single asterisk indicates p<0.05 and a double asterisk 
indicates p<O.OOI. Error bars represent 95% confidence interval. Sample size (N) indicated 
above each bar. 

During testing, trained 4-6 days-old AD males showed a significantly higher courtship 

latency compared to the sham males of the same genotype (Figure 3 ). A significant difference 

between 4-6 days-old elav-GAL4 and AD sham males was also observed and a significant 

difference between 16-17 days-old elav-GAL4 and AD trained males. A significant difference in 

the courtship latency between 4-6 days old and 16-17 days old trained elav-GAL4 males was 

also observed (Figure 3 ). 
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Figure 3: Average courtship latency between trained aud sham males during testing 
pha,se. Significant differences were observed between 4-6 days-old AD and its sham and 
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between 4-6 days-old sham males of elav-GAL4 and AD. Significant differences were also 
observed between 16-17 days-old trained males of elav-GAL4 and AD and between 4-6 
days-old elav-GAL4 and 16-17 days-old elav-GAL4 trained males. Horizontal bars indicate 
significant differences observed. A single asterisk indicated p<0.05 and a double asterisk 
indicates p<O.OOI. Error bars represent 95% confidence interval. Sample size (N) indicated 
above each bar. 

DISCUSSION 

With an increase in average life expectancy, there is an expected increase in the 

prevalence of dementia and AD (Alzheimer's Association, 2014). Developing a treatment that 

would simply delay onset of AD could lead to tremendous reductions in burdens felt by families 

and medical fields. In this study, we have tried to develop a model of AD that stresses the most 

important risk factor for developing AD: age. To develop a fly AD model, we used the 

GAL4/UAS system developed by Brand and Perrimon (1993) to express A~42 to the nervous 

system of Drosophila. Virgin red-eyed, straight-winged males from the F1 generation were used 

for the experiments. These males carried the tissue-specific driver (GAL4) that then binds to the 

UAS to induce transcription of the gene of interest (A~42). 

The courtship conditioning behavior assay was used to test deficits in learning and 

memory in Drosophila. In this associative conditioning procedure, male flies exposed to mated 

females during the training phase will have their courtship inhibited, and when exposed to a 

virgin female during the testing phase, will exhibit suppressed courtship behavior (Siegal and 

Hall, 1979). Learning and memory formation are important during experience-driven behavioral 

changes, as it directly impacts cognitive ability (Xu eta!., 2014). Results from this assay will aid 

in determining whether age and neurodegeneration have an impact on memory, similar to what 

has been seen with human AD patients. To determine the effects on learning, virgin male flies 

were placed in a courtship chamber with a previously mated (trainer) elav-GAL4 female for 60 
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minutes. Courtship behavior was assessed during the first 10 minutes compared with the last 10 

minutes. Our results for 4-6 days old wild-type elav-GAL4 flies show a significant reduction in 

courtship behavior in the last 10 minutes compared with the first 10 minutes, indicative of 

behavior modification and appropriate learning (Figure 1 ). The rapid initial decrease in courtship 

behavior probably reflects simple interruption of initial courtship by females' repelling 

movements. Our results for 4-6 days old male AD flies also show a significant decrease in 

courtship behavior in the last 1 0 minutes compared with the first I 0 minutes. This indicates that 

our flies expressing A~42 are capable of interpreting sensory stimuli and able to alter their 

behavior, and thus A~42 does not affect the fly's ability to learn. 

During training, no significant decrease in courtship behavior for both elav-GAL4 and 

AD flies at 16-17 days old was observed. Although there was no significant difference, a similar 

pattern of decreased courtship behavior was observed for 16-17 days-old elav-GAL4 males 

during the last 10 minutes compared to the first 10 minutes (Figure 1 ). A larger sample size 

would aid in determining whether or not there is a significant difference, but current results 

indicate a slight decrease in courtship behavior, similar to 4-6 days-old elav-GAL4 males. The 

same carmot be said for 16-17 days-old AD flies. Although not significant, AD flies at this age 

show a higher courtship index in the last 10 minutes compared to the first 10 minutes (Figure 1 ). 

This result could be due to development of age-dependent neuronal dysfunction, with older 

males unable to effectively perceive and interpret sensory stimuli to alter their behavior 

appropriately (learn). 

There exists several phases of memory in Drosophila, with short-term memory retained 

out to 1 hour post training. To test this phase of memory, we assayed elav-GAL4 and AD flies 

for their recall memory by transferring trained male flies to clean mating chambers containing a 
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virgin elav-GAL4 female within 2 minutes and scoring their courtship behavior for I 0 minutes. 

Trained 4-6 days-old elav-GAL4 males show a significant decrease in courtship activity when 

compared with sham control males of the same age and genotype (Figure 2), indicating a change 

in behavior that is consistent with normal recall memory of training. Though no significant 

difference was observed with 4-6 days-old AD males, a similar pattern of trained males having 

lower Cis than their sham controls was observed (Figure 2). Because these flies are capable of 

interpreting sensory stimuli and alter their behavior (Figure 1), their inability to significantly 

suppress courtship behavior during the testing phase could indicate defects in short-term memory 

recall at this young age. As mentioned previously, a significant decrease in courtship behavior 

for 4-6 days-old AD males during the last I 0 minutes compared to the first 10 minutes was 

observed. This indicates that A~42 does not affect the fly's ability to learn during training, but it 

does have an effect on recall memory during testing. This outcome could also be explained by a 

low population size for the AD sham controls. Further experiments at this age range would have 

to be conducted for definitive differences to be seen. 

In this study, we were especially interested in developing an aged model of AD in flies to 

determine the role age and A~42 has on memory. The testing phase of this assay therefore would 

help to provide us with possible answers to this question. No significant decrease in courtship 

behavior for both elav-GAL4 and AD flies at 16-17 days old was observed, when compared to 

their respective sham controls (Figure 2). Interestingly, AD males in this age group as a whole 

exhibited average Cis comparable to 4-6 days-old elav-GAL4 males. The data suggests that AD 

flies at this age group are capable of successfully altering their behavior during training and 

suppressing courtship behavior during testing. This is not the case with AD males at 16-17 days-

old, as evident in Figure I. Overall, these flies had a higher CI during the last 10 minutes 
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compared to the first 10 minutes of training, indicative of impaired learning, despite the rejection 

from mated female trainers. Upon further analysis, 16-17 days-old AD males exhibited 

significantly prolonged courtship latency during testing compared to their sham controls, which 

directly affected the CI calculation (Figure 3). With AD males at this age group taking on 

average two minutes before starting any courtship behavior, this resulted in less time for the 

males to be analyzed for courtship behavior. The results observed for elav-GAL4 males at this 

age during testing were consistent with the results seen for the same flies during training. 

Although not significant in both cases, an expected pattern of decreased courtship behavior in the 

last 10 minutes compared to the first I 0 minutes during training was observed, as well as 

suppressed courtship behavior during testing when compared to their respective age-matched 

sham controls. Nonetheless, elav-GAL4 males in this age group showed more persistent 

courtship behaviors during training (Figure 1) and testing (Figure 2) compared to the younger 

elav-GAL4 flies, despite the rejection from mated female trainers during training. 

A possible explanation could be that older males in general are more sexually mature, 

and may ignore any cues imposed by trainer females during training. Therefore, when exposed to 

a virgin female, 16-17 days-old elav-GAL4 males are no longer subdued by any previous 

rejection cues. Analysis of courtship latencies, especially for the older elav-GAL4 flies supports 

this hypothesis. As seen in Figure 3, these older flies exhibited a significantly lower courtship 

latency when compared to younger elav-GAL4 flies (Figure 3). In Drosophila, male mating 

ability is a critical component of reproductive fitness, and therefore results obtained for the older 

elav-GAL4 flies could be an indication of the fly's drive to pass on their genetic code. 

Our study aimed to further understand the impact age and neurodegeneration have on 

short-term memory. As seen with many AD patients, a progressive decline in memory, along 
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with other histological changes, is what characterizes this neurodegenerative disorder. Through 

this study, we were able to utilize Drosophila melanogaster as a model for AD to study the 

effects AP42 and age had on memory. Through the courtship suppression assay, we were able to 

determine that courtship behavior was not completely eliminated by neurodegeneration. Flies 

were still able to perform courtship activity at both age groups assayed. As with previous results 

discussed herein, the experiments from this study needs to be repeated with a larger sample size 

to obtain clearer differences. Drosophila served as an excellent model for examining these 

relationships, although they lack the complexity of humans and the many issues that often 

accompany neurodegenerative disorders (ex. infections, heart attacks, accidents). Even so, this 

model can still be useful for assessing and developing interventions that could help to decelerate 

and better understand the progression of AD. Further studies with this experimental setup could 

be used for drug screening and looking at the effects it has on AD pathogenesis. It would be 

beneficial in any future experiments to look at both progressive neuronal or muscular 

dysfunctions determined by age-dependent memory defects or muscular defects, as these are 

often observed with human AD patients. 

ACKNOWLEDGMENTS 

A special thanks to Dr. Fang-Ju Lin for advisement and continuous support throughout 

this project, and to the Honors Program, Department of Biology, and College of Science at 

Coastal Carolina University for their generous support, as well as inspiration and support from 

Dr. Paulus, Dr. Jeibmann, and graduate student Johannes Berlandi of University Hospital of 

Miinster in MUnster, Germany. Additional thanks to Alecia Hostettler and Mystic Harrison for 

their support and assistance. 



Robles 21 

Literature Cited 

Akalal, DBG., Wilson, C.F., Zong, L., Tanaka, N.K., Ito, K., Davis, R.L. (2006). Roles for 

Drosophila mushroom body neurons in olfactory learning and memory. Learn & Mem. 

13(5), 659-668 

Alzheimer's Association. (20 15). 2015 Alzheimer's Disease Facts and Figures. Alzheimer's & 

Dementia.13(3), 1-88 

Beck, C.D.O., Schroeder, B., Davis, R.L. (2000). Learning Performance of Normal and Mutant 

Drosophila after Repeated Conditioning Trials with Discrete Stimuli. J. Neurosci. 20(8), 

2944-2953 

Brand, A.H., Perrimon, N. (1993). Targeted gene expression as a means of altering cell fates and 

generating dominant phenotypes. Development. 118(2), 401-415 

Folwell, J., Cowan, C.M., Ubhi, K.K., Shiabh, H., Newman, T.A., Shepherd, D., Mudher, A. 

(2009). AB exacerbates the neuronal dysfunction caused by human tau expression in a 

Drosophila model of Alzheimer's disease. ExpNeurol, 223(2), 40!-409. doi: 10.1016/ 

j .expneurol.2009.09.0 14 

Goguel, V, Belair, A.L., Ayaz, D., Lampin-Saint-Amaux, A., Scaplehorn, N., Hassan, B.A., 

Preat, T. (20 II). Drosophila Amyloid Precursor Protein-Like Is Required for Long-Term 

Memory. J. Neurosci. 31 (3), 1032-1037 

Hu, Y., Han, Y., Wang, X., Xue, L. (2014). Aging-related neurodegeneration eliminates male 

courtship choice in Drosophila. Neu Aging. 35(9), 2174-2178 



Robles 22 

Iijima, K., Liu, H., Chiang, A., Hearn, S.A., Konsolaki, M., Zhong, Y. (2004). Dissecting the 

patholocial effects of human AB40 and AB42 in Drosophila: A potential model for 

Alzhiemer's disease. PNAS, 101(17), 6623-6628. doi: 10.1073/pnas.0400895101 

Kim, Y.C., Lee, H. G., Lim, J., Han, K.A. (2013). Appetitive Learning Requires the Alpha1-Like 

Octopamine Receptor OAMB in the Drosophila Mushroom Body Neurons. J. Neurosci. 

33(4), 1672-1677 

Ling, D., Song, H.J., Garza, D., Neufeld, T.P., Salvaterra, P.M. (2009). Abeta42-induced 

neurodegeneration via an age-dependent autophagic-lysosomal injury in Drosophila. 

PLoS One, 4(1), l-11. doi: l0.1371/journal.pone.0004201 

Martin, J.R., Ernst, R., Heisenberg, M. (1998). Mushroom Bodies Suppress Locomotor Activity 

in Drosophila melanogaster. Learn Mem. 5 (1-2), 179-191 

McBride, S.M.J., Giuliani, G., Choi, C., Krause, P., Correale, D., Watson, K., Baker, G., Siwicki, 

K.K. (1999). Mushrooom Body Ablation Impairs Short-Term Memory and Long-Term 

Memory of Courtship Conditioning in Drosophila melanogaster. Neuron. 24(4), 967-977 

Mershin, A., Pavlopoulos, E., Fitch, 0., Braden, B.C., Nanopoulos, D.V., Skoulakis, E.M.C. 

(2004). Learning and Memory Deficits upon TAU Accumulation in Drosophila 

Mushroom Body Neurons. LearnMem, 11 (3), 277-287. doi: 10.1101/lm.70804 

Mhatre, S.D., Michelson, S.J., Gomes, J., Tabb, L.P., Saunders, A.J., & Marenda, D.R. (2014). 

Development and characterization of an aged onset model of Alzheimer's disease in 

Drosophila melangogaster. Experimental Neurology, 261,772-781. doi: 10.1016/ 

j .expneurol.2014.08.02l 



•• Robles 23 

Moehring, A.J., Mackay, T.F.C. (2004). The Quantitative Genetic Basis of Male Mating 

Behavior in Drosophila melanogaster. Genetics. 167(3), 1249-1263 

Rogers, I., Kerr, F., Martinez, P., Hardy, J., Lovestone, S., Partridge, L. (2012). Ageing Increases 

Vulnerability to AB42 Toxicity in Drosophila. PloS ONE. 7(7), 1-11. Doi: 10.13711 

journal.pone.0040569 

Siegel, R. W., Hall, J.C. (1979). Conditioned responses in courtship behavior of normal and 

mutant Drosophila. Proc. Natl. Acad. Sci. US.A. 76(7), 3430-3434 

Sofola-Adesakin, 0., Castillo-Quan, J., Rallis, C., Tain, L.S., Bjedov, I., Rogers, I., Li, L., 

Martinez, P., Khericha, M., Cabecinha, M., Biihler, J., Partridge, L. (2014). Lithium 

suppresses AB pathology by inhibiting translation in an adult Drosophila model of 

Alzheimer's disease. Front Aging Neurosci. 6(190), 1-10. doi: 10.3389/fuagi.2014.00190 

Torroja, L., Packard, M., Gorczyca, M., White, K., Budnik, V. (1999). The Drosophila B-

Amyloid Precursor Protein Homolog Promotes Synapse Differentiation at the 

NeuromuscularJunction. J. Neurosci. 19(18), 7793-7803 

Xu, S., Wilf, R., Menon, T., Panikker, P., Sarthi, J., Elefant, F. (2014). Epigenetic Control of 

Learning and Memory in Drosophila by Tip60 HAT Action. Genetics. 198(4), 1571-1586 


	Coastal Carolina University
	CCU Digital Commons
	Spring 5-15-2016

	Learning and Memory in a Drosophila melanogaster Model of Alzheimer's Disease
	Eric Robles
	Recommended Citation


	tmp.1537881490.pdf.f8WFb

